語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Artificial intelligence for scientif...
~
Iten, Raban.
FindBook
Google Book
Amazon
博客來
Artificial intelligence for scientific discoveries = extracting physical concepts from experimental data using deep learning /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Artificial intelligence for scientific discoveries/ by Raban Iten.
其他題名:
extracting physical concepts from experimental data using deep learning /
作者:
Iten, Raban.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xiii, 170 p. :ill., digital ;24 cm.
內容註:
Introduction -- Machine Learning Background -- Overview of Using Machine Learning for Physical Discoveries -- Theory: Formalizing the Process of Human Model Building -- Methods: Using Neural Networks to Find Simple Representations -- Applications: Physical Toy Examples -- Open Questions and Future Prospects.
Contained By:
Springer Nature eBook
標題:
Artificial intelligence. -
電子資源:
https://doi.org/10.1007/978-3-031-27019-2
ISBN:
9783031270192
Artificial intelligence for scientific discoveries = extracting physical concepts from experimental data using deep learning /
Iten, Raban.
Artificial intelligence for scientific discoveries
extracting physical concepts from experimental data using deep learning /[electronic resource] :by Raban Iten. - Cham :Springer International Publishing :2023. - xiii, 170 p. :ill., digital ;24 cm.
Introduction -- Machine Learning Background -- Overview of Using Machine Learning for Physical Discoveries -- Theory: Formalizing the Process of Human Model Building -- Methods: Using Neural Networks to Find Simple Representations -- Applications: Physical Toy Examples -- Open Questions and Future Prospects.
Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The automation of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the automation of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist's reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus' conclusion that the solar system is heliocentric.
ISBN: 9783031270192
Standard No.: 10.1007/978-3-031-27019-2doiSubjects--Topical Terms:
516317
Artificial intelligence.
LC Class. No.: Q180.55.D57
Dewey Class. No.: 507.2
Artificial intelligence for scientific discoveries = extracting physical concepts from experimental data using deep learning /
LDR
:02380nmm a2200325 a 4500
001
2318026
003
DE-He213
005
20230411211809.0
006
m d
007
cr nn 008maaau
008
230902s2023 sz s 0 eng d
020
$a
9783031270192
$q
(electronic bk.)
020
$a
9783031270185
$q
(paper)
024
7
$a
10.1007/978-3-031-27019-2
$2
doi
035
$a
978-3-031-27019-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q180.55.D57
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
507.2
$2
23
090
$a
Q180.55.D57
$b
I88 2023
100
1
$a
Iten, Raban.
$3
3632668
245
1 0
$a
Artificial intelligence for scientific discoveries
$h
[electronic resource] :
$b
extracting physical concepts from experimental data using deep learning /
$c
by Raban Iten.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xiii, 170 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Machine Learning Background -- Overview of Using Machine Learning for Physical Discoveries -- Theory: Formalizing the Process of Human Model Building -- Methods: Using Neural Networks to Find Simple Representations -- Applications: Physical Toy Examples -- Open Questions and Future Prospects.
520
$a
Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The automation of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the automation of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist's reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus' conclusion that the solar system is heliocentric.
650
0
$a
Artificial intelligence.
$3
516317
650
0
$a
Discoveries in science
$x
Data processing.
$3
3632669
650
1 4
$a
Theoretical, Mathematical and Computational Physics.
$3
1066859
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Data Science.
$3
3538937
650
2 4
$a
Data Analysis and Big Data.
$3
3538537
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-27019-2
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9454276
電子資源
11.線上閱覽_V
電子書
EB Q180.55.D57
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入