Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Data science in chemistry = artifici...
~
Gressling, Thorsten.
Linked to FindBook
Google Book
Amazon
博客來
Data science in chemistry = artificial intelligence, big data, chemometrics, and quantum computing with Jupyter /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Data science in chemistry/ Thorsten Gressling.
Reminder of title:
artificial intelligence, big data, chemometrics, and quantum computing with Jupyter /
Author:
Gressling, Thorsten.
Published:
Berlin :De Gruyter, : c2021.,
Description:
1 online resource (xviii, 522 p.) :ill.
Subject:
Chemistry - Data processing. -
Online resource:
http://www.degruyter.com/isbn/9783110629453
ISBN:
9783110629453
Data science in chemistry = artificial intelligence, big data, chemometrics, and quantum computing with Jupyter /
Gressling, Thorsten.
Data science in chemistry
artificial intelligence, big data, chemometrics, and quantum computing with Jupyter /[electronic resource] :Thorsten Gressling. - 1st ed. - Berlin :De Gruyter,c2021. - 1 online resource (xviii, 522 p.) :ill. - De Gruyter graduate. - De Gruyter graduate..
Includes bibliographical references and indexes.
Frontmatter --
The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity - data science - includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and take chemical research and engineering to the next level. It covers modern aspects like Big Data, Artificial Intelligence and Quantum computing.
In English.
ISBN: 9783110629453
Standard No.: 10.1515/9783110629453doiSubjects--Topical Terms:
588752
Chemistry
--Data processing.
LC Class. No.: QD39.3.E46 / G74 2021
Dewey Class. No.: 542/.85
Data science in chemistry = artificial intelligence, big data, chemometrics, and quantum computing with Jupyter /
LDR
:06001cmm a2200325 a 4500
001
2311175
003
DE-B1597
005
20210830012106.0
006
m o d
007
cr cnu---unuuu
008
230722s2021 gw a ob 001 0 eng d
020
$a
9783110629453
020
$z
9783110629392
$q
(pbk.)
024
7
$a
10.1515/9783110629453
$2
doi
035
$a
9783110629453
040
$a
DE-B1597
$b
eng
$c
DE-B1597
041
0
$a
eng
044
$a
gw
$c
DE
050
0 0
$a
QD39.3.E46
$b
G74 2021
082
0 4
$a
542/.85
$2
23
100
1
$a
Gressling, Thorsten.
$3
3620548
245
1 0
$a
Data science in chemistry
$h
[electronic resource] :
$b
artificial intelligence, big data, chemometrics, and quantum computing with Jupyter /
$c
Thorsten Gressling.
250
$a
1st ed.
260
$a
Berlin :
$b
De Gruyter,
$c
c2021.
300
$a
1 online resource (xviii, 522 p.) :
$b
ill.
490
1
$a
De Gruyter graduate
504
$a
Includes bibliographical references and indexes.
505
0 0
$t
Frontmatter --
$t
Preface --
$t
Contents --
$t
Introduction --
$t
Technical setup and naming conventions --
$t
1 Data science: introduction --
$t
2 Data science: the "fourth paradigm" of science --
$t
3 Relations to other domains and cheminformatics --
$t
Part A: IT, data science, and AI --
$t
IT basics (cloud, REST, edge) --
$t
4 Cheminformatics application landscape --
$t
5 Cloud, fog, and AI runtime environments --
$t
6 DevOps, DataOps, and MLOps --
$t
7 High-performance computing (HPC) and cluster --
$t
8 REST and MQTT --
$t
9 Edge devices and IoT --
$t
Programming --
$t
10 Python and other programming languages --
$t
11 Python standard libraries and Conda --
$t
12 IDE's and workflows --
$t
13 Jupyter notebooks --
$t
14 Working with notebooks and extensions --
$t
15 Notebooks and Python --
$t
16 Versioning code and Jupyter notebooks --
$t
17 Integration of Knime and Excel --
$t
Data engineering --
$t
18 Big data --
$t
19 Jupyter and Spark --
$t
20 Files: structure representations --
$t
21 Files: other formats --
$t
22 Data retrieval and processing: ETL --
$t
23 Data pipelines --
$t
24 Data ingestion: online data sources --
$t
25 Designing databases --
$t
26 Data science workflow and chemical descriptors --
$t
Data science as field of activity --
$t
27 Community and competitions --
$t
28 Data science libraries --
$t
29 Deep learning libraries --
$t
30 ML model sources and marketplaces --
$t
31 Model metrics: MLFlow and Ludwig --
$t
Introduction to ML and AI --
$t
32 First generation (logic and symbols) --
$t
33 Second generation (shallow models) --
$t
34 Second generation: regression --
$t
35 Decision trees --
$t
36 Second generation: classification --
$t
37 Second generation: clustering and dimensionality reduction --
$t
38 Third generation: deep learning models (ANN) --
$t
39 Third generation: SNN - spiking neural networks --
$t
40 xAI: eXplainable AI --
$t
Part B: Jupyter in cheminformatics --
$t
Physical chemistry --
$t
41 Crystallographic data --
$t
42 Crystallographic calculations --
$t
43 Chemical kinetics and thermochemistry --
$t
44 Reaction paths and mixtures --
$t
45 The periodic table of elements --
$t
46 Applied thermodynamics --
$t
Material science --
$t
47 Material informatics --
$t
48 Molecular dynamics workflows --
$t
49 Molecular mechanics --
$t
50 VASP --
$t
51 Gaussian (ASE) --
$t
52 GROMACS --
$t
53 AMBER, NAMD, and LAMMPS --
$t
54 Featurize materials --
$t
55 ASE and NWChem --
$t
Organic chemistry --
$t
56 Visualization --
$t
57 Molecules handling and normalization --
$t
58 Features and 2D descriptors (of carbon compounds) --
$t
59 Working with molecules and reactions --
$t
60 Fingerprint descriptors (1D) --
$t
61 Similarities --
$t
Engineering, laboratory, and production --
$t
62 Laboratory: SILA and AnIML --
$t
63 Laboratory: LIMS and daily calculations --
$t
64 Laboratory: robotics and cognitive assistance --
$t
65 Chemical engineering --
$t
66 Reactors, process flow, and systems analysis --
$t
67 Production: PLC and OPC/UA --
$t
68 Production: predictive maintenance --
$t
Part C: Data science --
$t
Data engineering in analytic chemistry --
$t
69 Titration and calorimetry --
$t
70 NMR --
$t
71 X-ray-based characterization: XAS, XRD, and EDX --
$t
72 Mass spectroscopy --
$t
73 TGA, DTG --
$t
74 IR and Raman spectroscopy --
$t
75 AFM and thermogram analysis --
$t
76 Gas chromatography-mass spectrometry (GC-MS) --
$t
Applied data science and chemometrics --
$t
77 SVD chemometrics example --
$t
78 Principal component analysis (PCA) --
$t
79 QSAR: quantitative structure-activity relationship --
$t
80 DeepChem: binding affinity --
$t
81 Stoichiometry and reaction balancing --
$t
Applied artificial intelligence --
$t
82 ML Python libraries in chemistry --
$t
83 AI in drug design --
$t
84 Automated machine learning --
$t
85 Retrosynthesis and reaction prediction --
$t
86 ChemML --
$t
87 AI in material design --
$t
Knowledge and information --
$t
88 Ontologies and inferencing --
$t
89 Analyzing networks --
$t
90 Knowledge ingestion: labeling and optical recognition --
$t
91 Content mining and knowledge graphs --
$t
Part D: Quantum computing and chemistry Introduction --
$t
92 Quantum concepts --
$t
93 QComp: technology vendors --
$t
94 Quantum computing simulators --
$t
95 Quantum algorithms --
$t
96 Quantum chemistry software (QChem) --
$t
Quantum Computing Applications --
$t
97 Application examples --
$t
98 Simulating molecules using VQE --
$t
99 Studies on small clusters of LiH, BeH2, and NaH --
$t
100 Quantum machine learning (QAI) --
$t
Code index --
$t
Index.
520
$a
The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity - data science - includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and take chemical research and engineering to the next level. It covers modern aspects like Big Data, Artificial Intelligence and Quantum computing.
546
$a
In English.
588
0
$a
Description based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2021)
650
0
$a
Chemistry
$x
Data processing.
$3
588752
830
0
$a
De Gruyter graduate.
$3
3539397
856
4 0
$u
http://www.degruyter.com/isbn/9783110629453
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9449789
電子資源
11.線上閱覽_V
電子書
EB QD39.3.E46 G74 2021
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login