Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Modern survey analysis = using Pytho...
~
Paczkowski, Walter R.
Linked to FindBook
Google Book
Amazon
博客來
Modern survey analysis = using Python for deeper insights /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Modern survey analysis/ by Walter R. Paczkowski.
Reminder of title:
using Python for deeper insights /
Author:
Paczkowski, Walter R.
Published:
Cham :Springer International Publishing : : 2022.,
Description:
xxvi, 347 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
1. Introduction -- 2. Understanding the structure of survey data -- 3. Shallow analyses of survey data -- 4. Deep analyses of survey data -- 5. Conclusion and wrap-up.
Contained By:
Springer Nature eBook
Subject:
Market surveys - Data processing. -
Online resource:
https://doi.org/10.1007/978-3-030-76267-4
ISBN:
9783030762674
Modern survey analysis = using Python for deeper insights /
Paczkowski, Walter R.
Modern survey analysis
using Python for deeper insights /[electronic resource] :by Walter R. Paczkowski. - Cham :Springer International Publishing :2022. - xxvi, 347 p. :ill. (some col.), digital ;24 cm.
1. Introduction -- 2. Understanding the structure of survey data -- 3. Shallow analyses of survey data -- 4. Deep analyses of survey data -- 5. Conclusion and wrap-up.
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
ISBN: 9783030762674
Standard No.: 10.1007/978-3-030-76267-4doiSubjects--Topical Terms:
3606340
Market surveys
--Data processing.
LC Class. No.: HF5415 / .P33 2022
Dewey Class. No.: 658.83
Modern survey analysis = using Python for deeper insights /
LDR
:02110nmm a2200349 a 4500
001
2304256
003
DE-He213
005
20220911170555.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783030762674
$q
(electronic bk.)
020
$a
9783030762667
$q
(paper)
024
7
$a
10.1007/978-3-030-76267-4
$2
doi
035
$a
978-3-030-76267-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HF5415
$b
.P33 2022
072
7
$a
PBT
$2
bicssc
072
7
$a
K
$2
bicssc
072
7
$a
BUS061000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
658.83
$2
23
090
$a
HF5415
$b
.P122 2022
100
1
$a
Paczkowski, Walter R.
$3
3511009
245
1 0
$a
Modern survey analysis
$h
[electronic resource] :
$b
using Python for deeper insights /
$c
by Walter R. Paczkowski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xxvi, 347 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
1. Introduction -- 2. Understanding the structure of survey data -- 3. Shallow analyses of survey data -- 4. Deep analyses of survey data -- 5. Conclusion and wrap-up.
520
$a
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
650
0
$a
Market surveys
$x
Data processing.
$3
3606340
650
0
$a
Python (Computer program language)
$3
729789
650
1 4
$a
Statistics in Business, Management, Economics, Finance, Insurance.
$3
3538572
650
2 4
$a
Data and Information Visualization.
$3
3538847
650
2 4
$a
Marketing.
$3
536353
650
2 4
$a
Statistics and Computing.
$3
3594429
650
2 4
$a
Data Science.
$3
3538937
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-76267-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9445805
電子資源
11.線上閱覽_V
電子書
EB HF5415 .P33 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login