Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The quasispecies equation and classi...
~
Cerf, Raphael.
Linked to FindBook
Google Book
Amazon
博客來
The quasispecies equation and classical population models
Record Type:
Electronic resources : Monograph/item
Title/Author:
The quasispecies equation and classical population models/ by Raphael Cerf, Joseba Dalmau.
Author:
Cerf, Raphael.
other author:
Dalmau, Joseba.
Published:
Cham :Springer International Publishing : : 2022.,
Description:
x, 242 p. :ill., digital ;24 cm.
[NT 15003449]:
1. Introduction -- Part I.Finite Genotype Space -- 2. The Quasispecies equation -- 3. Non-Overlapping Generations -- 4. Overlapping Generations -- 5. Probabilistic Representations -- Part II. The Sharp Peak Landscape -- 6. Long Chain Regime -- 7. Error Threshold and Quasispecies -- 8. Probabilistic Derivation -- 9. Summation of the Series -- 10. Error Threshold in Infinite Populations -- Part III. Error Threshold in Finite Populations -- 11.Phase Transition -- 12. Computer Simulations -- 13. Heuristics -- 14. Shape of the Critical Curve -- 15. Framework for the Proofs -- Part IV. Proof for Wright-Fisher -- 16. Strategy of the Proof -- 17. The Non-Neutral Phase M -- 18. Mutation Dynamics -- 19. The Neutral Phase N -- 20. Synthesis -- Part V. Class-Dependent Fitness Landscapes -- 21. Generalized Quasispecies Distributions -- 22. Error Threshold -- 23. Probabilistic Representation -- 24. Probabilistic Interpretations -- 25. Infinite Population Models -- Part VI. A Glimpse at the Dynamics -- 26. Deterministic Level -- 27. From Finite to Infinite Population -- 28. Class-Dependent Landscapes -- A. Markov Chains and Classical Results -- References -- Index.
Contained By:
Springer Nature eBook
Subject:
Probabilities. -
Online resource:
https://doi.org/10.1007/978-3-031-08663-2
ISBN:
9783031086632
The quasispecies equation and classical population models
Cerf, Raphael.
The quasispecies equation and classical population models
[electronic resource] /by Raphael Cerf, Joseba Dalmau. - Cham :Springer International Publishing :2022. - x, 242 p. :ill., digital ;24 cm. - Probability theory and stochastic modelling,v. 1022199-3149 ;. - Probability theory and stochastic modelling ;v. 102..
1. Introduction -- Part I.Finite Genotype Space -- 2. The Quasispecies equation -- 3. Non-Overlapping Generations -- 4. Overlapping Generations -- 5. Probabilistic Representations -- Part II. The Sharp Peak Landscape -- 6. Long Chain Regime -- 7. Error Threshold and Quasispecies -- 8. Probabilistic Derivation -- 9. Summation of the Series -- 10. Error Threshold in Infinite Populations -- Part III. Error Threshold in Finite Populations -- 11.Phase Transition -- 12. Computer Simulations -- 13. Heuristics -- 14. Shape of the Critical Curve -- 15. Framework for the Proofs -- Part IV. Proof for Wright-Fisher -- 16. Strategy of the Proof -- 17. The Non-Neutral Phase M -- 18. Mutation Dynamics -- 19. The Neutral Phase N -- 20. Synthesis -- Part V. Class-Dependent Fitness Landscapes -- 21. Generalized Quasispecies Distributions -- 22. Error Threshold -- 23. Probabilistic Representation -- 24. Probabilistic Interpretations -- 25. Infinite Population Models -- Part VI. A Glimpse at the Dynamics -- 26. Deterministic Level -- 27. From Finite to Infinite Population -- 28. Class-Dependent Landscapes -- A. Markov Chains and Classical Results -- References -- Index.
This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen's famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright-Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.
ISBN: 9783031086632
Standard No.: 10.1007/978-3-031-08663-2doiSubjects--Topical Terms:
518889
Probabilities.
LC Class. No.: QA273 / .C47 2022
Dewey Class. No.: 519.2
The quasispecies equation and classical population models
LDR
:03473nmm a2200337 a 4500
001
2302731
003
DE-He213
005
20220730114241.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783031086632
$q
(electronic bk.)
020
$a
9783031086625
$q
(paper)
024
7
$a
10.1007/978-3-031-08663-2
$2
doi
035
$a
978-3-031-08663-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA273
$b
.C47 2022
072
7
$a
PB
$2
bicssc
072
7
$a
MAT000000
$2
bisacsh
072
7
$a
PB
$2
thema
082
0 4
$a
519.2
$2
23
090
$a
QA273
$b
.C414 2022
100
1
$a
Cerf, Raphael.
$3
768499
245
1 4
$a
The quasispecies equation and classical population models
$h
[electronic resource] /
$c
by Raphael Cerf, Joseba Dalmau.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
x, 242 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Probability theory and stochastic modelling,
$x
2199-3149 ;
$v
v. 102
505
0
$a
1. Introduction -- Part I.Finite Genotype Space -- 2. The Quasispecies equation -- 3. Non-Overlapping Generations -- 4. Overlapping Generations -- 5. Probabilistic Representations -- Part II. The Sharp Peak Landscape -- 6. Long Chain Regime -- 7. Error Threshold and Quasispecies -- 8. Probabilistic Derivation -- 9. Summation of the Series -- 10. Error Threshold in Infinite Populations -- Part III. Error Threshold in Finite Populations -- 11.Phase Transition -- 12. Computer Simulations -- 13. Heuristics -- 14. Shape of the Critical Curve -- 15. Framework for the Proofs -- Part IV. Proof for Wright-Fisher -- 16. Strategy of the Proof -- 17. The Non-Neutral Phase M -- 18. Mutation Dynamics -- 19. The Neutral Phase N -- 20. Synthesis -- Part V. Class-Dependent Fitness Landscapes -- 21. Generalized Quasispecies Distributions -- 22. Error Threshold -- 23. Probabilistic Representation -- 24. Probabilistic Interpretations -- 25. Infinite Population Models -- Part VI. A Glimpse at the Dynamics -- 26. Deterministic Level -- 27. From Finite to Infinite Population -- 28. Class-Dependent Landscapes -- A. Markov Chains and Classical Results -- References -- Index.
520
$a
This monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen's famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright-Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models.
650
0
$a
Probabilities.
$3
518889
650
0
$a
Eigenfunctions.
$3
706113
650
0
$a
Quasisymmetric groups.
$3
3603367
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Biological Sciences.
$3
1363809
650
2 4
$a
Stochastic Modelling.
$3
3538808
650
2 4
$a
Population Dynamics.
$3
876620
650
2 4
$a
Community and Population Ecology.
$3
3594187
650
2 4
$a
Applied Probability.
$3
3599446
700
1
$a
Dalmau, Joseba.
$3
3603365
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Probability theory and stochastic modelling ;
$v
v. 102.
$3
3603366
856
4 0
$u
https://doi.org/10.1007/978-3-031-08663-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9444280
電子資源
11.線上閱覽_V
電子書
EB QA273 .C47 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login