Interactions with lattice polytopes ...
Interactions With Lattice Polytopes (Workshop) ((2017 :)

Linked to FindBook      Google Book      Amazon      博客來     
  • Interactions with lattice polytopes = Magdeburg, Germany, September 2017 /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Interactions with lattice polytopes/ edited by Alexander M. Kasprzyk, Benjamin Nill.
    Reminder of title: Magdeburg, Germany, September 2017 /
    other author: Kasprzyk, Alexander M.
    corporate name: Interactions With Lattice Polytopes (Workshop)
    Published: Cham :Springer International Publishing : : 2022.,
    Description: x, 364 p. :ill., digital ;24 cm.
    [NT 15003449]: G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes -- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes -- M. Blanco, Lattice distances in 3-dimensional quantum jumps -- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry -- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content -- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings -- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces -- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes -- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces -- K. Jochemko, Linear recursions for integer point transforms -- V. Kiritchenko and M. Padalko, Schubert calculus on Newton-Okounkov polytopes, Bach Le Tran, An Eisenbud-Goto-type upper bound for the Castelnuovo-Mumford regularity of fake weighted projective spaces -- M. Pabiniak, Toric degenerations in symplectic geometry -- A. Petracci, On deformations of toric Fano varieties -- T. Prince, Polygons of finite mutation type -- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes -- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes.
    Contained By: Springer Nature eBook
    Subject: Polytopes - Congresses. -
    Online resource: https://doi.org/10.1007/978-3-030-98327-7
    ISBN: 9783030983277
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login