Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Extensions and restrictions of gener...
~
Steinberg, Jonathan.
Linked to FindBook
Google Book
Amazon
博客來
Extensions and restrictions of generalized probabilistic theories
Record Type:
Electronic resources : Monograph/item
Title/Author:
Extensions and restrictions of generalized probabilistic theories/ by Jonathan Steinberg.
Author:
Steinberg, Jonathan.
Published:
Wiesbaden :Springer Fachmedien Wiesbaden : : 2022.,
Description:
viii, 79 p. :ill., digital ;24 cm.
[NT 15003449]:
Introduction -- Mathematical preliminaries -- Generalized probabilistic theories -- Sections and Subsystems -- Two-sections of Quantum mechanics -- Conclusion.
Contained By:
Springer Nature eBook
Subject:
Quantum theory - Mathematics. -
Online resource:
https://doi.org/10.1007/978-3-658-37581-2
ISBN:
9783658375812
Extensions and restrictions of generalized probabilistic theories
Steinberg, Jonathan.
Extensions and restrictions of generalized probabilistic theories
[electronic resource] /by Jonathan Steinberg. - Wiesbaden :Springer Fachmedien Wiesbaden :2022. - viii, 79 p. :ill., digital ;24 cm. - BestMasters,2625-3615. - BestMasters..
Introduction -- Mathematical preliminaries -- Generalized probabilistic theories -- Sections and Subsystems -- Two-sections of Quantum mechanics -- Conclusion.
Generalized probabilistic theories (GPTs) allow us to write quantum theory in a purely operational language and enable us to formulate other, vastly different theories. As it turns out, there is no canonical way to integrate the notion of subsystems within the framework of convex operational theories. Sections can be seen as generalization of subsystems and describe situations where not all possible observables can be implemented. Jonathan Steinberg discusses the mathematical foundations of GPTs using the language of Archimedean order unit spaces and investigates the algebraic nature of sections. This includes an analysis of the category theoretic structure and the transformation properties of the state space. Since the Hilbert space formulation of quantum mechanics uses tensor products to describe subsystems, he shows how one can interpret the tensor product as a special type of a section. In addition he applies this concept to quantum theory and compares it with the formulation in the algebraic approach. Afterwards he gives a complete characterization of low dimensional sections of arbitrary quantum systems using the theory of matrix pencils. About the author Jonathan Steinberg studied physics and mathematics at the university of Siegen and obtained his M. Sc. in the field of quantum foundations. Currently he investigates the relation between tensor eigenvalues and the quantification of multipartite entanglement under the tutelage of Prof. Otfried Guhne.
ISBN: 9783658375812
Standard No.: 10.1007/978-3-658-37581-2doiSubjects--Topical Terms:
705044
Quantum theory
--Mathematics.
LC Class. No.: QC174.17.M35 / S74 2022
Dewey Class. No.: 530.12
Extensions and restrictions of generalized probabilistic theories
LDR
:02685nmm a2200337 a 4500
001
2300878
003
DE-He213
005
20220516130710.0
006
m d
007
cr nn 008maaau
008
230324s2022 gw s 0 eng d
020
$a
9783658375812
$q
(electronic bk.)
020
$a
9783658375805
$q
(paper)
024
7
$a
10.1007/978-3-658-37581-2
$2
doi
035
$a
978-3-658-37581-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.17.M35
$b
S74 2022
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
530.12
$2
23
090
$a
QC174.17.M35
$b
S819 2022
100
1
$a
Steinberg, Jonathan.
$3
594761
245
1 0
$a
Extensions and restrictions of generalized probabilistic theories
$h
[electronic resource] /
$c
by Jonathan Steinberg.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2022.
300
$a
viii, 79 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
BestMasters,
$x
2625-3615
505
0
$a
Introduction -- Mathematical preliminaries -- Generalized probabilistic theories -- Sections and Subsystems -- Two-sections of Quantum mechanics -- Conclusion.
520
$a
Generalized probabilistic theories (GPTs) allow us to write quantum theory in a purely operational language and enable us to formulate other, vastly different theories. As it turns out, there is no canonical way to integrate the notion of subsystems within the framework of convex operational theories. Sections can be seen as generalization of subsystems and describe situations where not all possible observables can be implemented. Jonathan Steinberg discusses the mathematical foundations of GPTs using the language of Archimedean order unit spaces and investigates the algebraic nature of sections. This includes an analysis of the category theoretic structure and the transformation properties of the state space. Since the Hilbert space formulation of quantum mechanics uses tensor products to describe subsystems, he shows how one can interpret the tensor product as a special type of a section. In addition he applies this concept to quantum theory and compares it with the formulation in the algebraic approach. Afterwards he gives a complete characterization of low dimensional sections of arbitrary quantum systems using the theory of matrix pencils. About the author Jonathan Steinberg studied physics and mathematics at the university of Siegen and obtained his M. Sc. in the field of quantum foundations. Currently he investigates the relation between tensor eigenvalues and the quantification of multipartite entanglement under the tutelage of Prof. Otfried Guhne.
650
0
$a
Quantum theory
$x
Mathematics.
$3
705044
650
0
$a
Probabilities.
$3
518889
650
1 4
$a
Quantum Physics.
$3
893952
650
2 4
$a
Quantum Information.
$3
3594468
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
BestMasters.
$3
2056364
856
4 0
$u
https://doi.org/10.1007/978-3-658-37581-2
950
$a
Physics and Astronomy (SpringerNature-11651)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9442770
電子資源
11.線上閱覽_V
電子書
EB QC174.17.M35 S74 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login