語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistics for data scientists = an ...
~
Kaptein, Maurits.
FindBook
Google Book
Amazon
博客來
Statistics for data scientists = an introduction to probability, statistics, and data analysis /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistics for data scientists/ by Maurits Kaptein, Edwin van den Heuvel.
其他題名:
an introduction to probability, statistics, and data analysis /
作者:
Kaptein, Maurits.
其他作者:
Heuvel, Edwin van den.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xxiv, 321 p. :ill. (some col.), digital ;24 cm.
內容註:
1 A First Look at Data -- 2 Sampling Plans and Estimates -- 3 Probability Theory -- 4 Random Variables and Distributions -- 5 Estimation -- 6 Multiple Random Variables -- 7 Making Decisions in Uncertainty -- 8 Bayesian Statistics.
Contained By:
Springer Nature eBook
標題:
Mathematical analysis - Statistical methods. -
電子資源:
https://doi.org/10.1007/978-3-030-10531-0
ISBN:
9783030105310
Statistics for data scientists = an introduction to probability, statistics, and data analysis /
Kaptein, Maurits.
Statistics for data scientists
an introduction to probability, statistics, and data analysis /[electronic resource] :by Maurits Kaptein, Edwin van den Heuvel. - Cham :Springer International Publishing :2022. - xxiv, 321 p. :ill. (some col.), digital ;24 cm. - Undergraduate topics in computer science,2197-1781. - Undergraduate topics in computer science..
1 A First Look at Data -- 2 Sampling Plans and Estimates -- 3 Probability Theory -- 4 Random Variables and Distributions -- 5 Estimation -- 6 Multiple Random Variables -- 7 Making Decisions in Uncertainty -- 8 Bayesian Statistics.
This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis - supported by numerous real data examples and reusable [R] code - with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.
ISBN: 9783030105310
Standard No.: 10.1007/978-3-030-10531-0doiSubjects--Topical Terms:
3592081
Mathematical analysis
--Statistical methods.
LC Class. No.: QA276.4 / .K36 2022
Dewey Class. No.: 519.50285
Statistics for data scientists = an introduction to probability, statistics, and data analysis /
LDR
:02322nmm a2200361 a 4500
001
2296969
003
DE-He213
005
20220202130653.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030105310
$q
(electronic bk.)
020
$a
9783030105303
$q
(paper)
024
7
$a
10.1007/978-3-030-10531-0
$2
doi
035
$a
978-3-030-10531-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.4
$b
.K36 2022
072
7
$a
UYAM
$2
bicssc
072
7
$a
PBT
$2
bicssc
072
7
$a
COM077000
$2
bisacsh
072
7
$a
UYAM
$2
thema
072
7
$a
PBT
$2
thema
082
0 4
$a
519.50285
$2
23
090
$a
QA276.4
$b
.K17 2022
100
1
$a
Kaptein, Maurits.
$3
2186471
245
1 0
$a
Statistics for data scientists
$h
[electronic resource] :
$b
an introduction to probability, statistics, and data analysis /
$c
by Maurits Kaptein, Edwin van den Heuvel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xxiv, 321 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Undergraduate topics in computer science,
$x
2197-1781
505
0
$a
1 A First Look at Data -- 2 Sampling Plans and Estimates -- 3 Probability Theory -- 4 Random Variables and Distributions -- 5 Estimation -- 6 Multiple Random Variables -- 7 Making Decisions in Uncertainty -- 8 Bayesian Statistics.
520
$a
This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis - supported by numerous real data examples and reusable [R] code - with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.
650
0
$a
Mathematical analysis
$x
Statistical methods.
$3
3592081
650
0
$a
Quantitative research
$x
Statistical methods.
$3
3512746
650
1 4
$a
Probability and Statistics in Computer Science.
$3
891072
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Probability Theory.
$3
3538789
700
1
$a
Heuvel, Edwin van den.
$3
3592080
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Undergraduate topics in computer science.
$3
1567579
856
4 0
$u
https://doi.org/10.1007/978-3-030-10531-0
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9438861
電子資源
11.線上閱覽_V
電子書
EB QA276.4 .K36 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入