Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Understanding Decadal Climate Predic...
~
Zhang, Wei.
Linked to FindBook
Google Book
Amazon
博客來
Understanding Decadal Climate Predictability in the Global Ocean.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Understanding Decadal Climate Predictability in the Global Ocean./
Author:
Zhang, Wei.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
Description:
111 p.
Notes:
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Contained By:
Dissertations Abstracts International82-03B.
Subject:
Climate change. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28091098
ISBN:
9798664745184
Understanding Decadal Climate Predictability in the Global Ocean.
Zhang, Wei.
Understanding Decadal Climate Predictability in the Global Ocean.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 111 p.
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Thesis (Ph.D.)--University of Miami, 2020.
This item must not be sold to any third party vendors.
Due to considerable social and economic implications, there is a continuously increasing demand for decadal climate predictions. However, decadal predictions remain a challenging problem largely owing to the insufficient knowledge of decadal predictability. The overarching goal of this work is to understand decadal climate predictability in the global ocean. Specifically, this work is motivated by current challenges in decadal predictability and has three major objectives. The first objective is to investigate the limits and mechanisms of decadal predictability, particularly the unresolved role of internal atmospheric noise in decadal predictability. The interactive ensemble (IE) coupling technique is used to quantify how the internal atmospheric noise at the air-sea interface impacts decadal predictability. We apply the nonlinear local Lyapunov exponent method to the Community Climate System Model comparing control simulations with IE simulations. The global patterns of decadal predictability are shown for both models and observations and we find that the impact of internal atmospheric noise on decadal predictability is not a linear question and largely dependent on the background coupling and dynamics.The second objective is to address the so-called "signal-to-noise paradox". The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically too small and models seem to make better predictions of the observations than they predict themselves. We introduce a Markov model framework to represent the ensemble forecasts and reproduce the paradox, which is primarily dependent on the magnitude of the persistence and noise variance between models and observations. The Markov model framework is applied to the North Atlantic Oscillation index based on the coupled models from the fifth Coupled Model Intercomparison Project (CMIP5). The results suggest the widespread existence of the signal-to-noise paradox that may exist at different timescales. We re-examine decadal predictability from the lens of the signal-to-noise paradox in the context of CMIP5 models for the sea surface temperature and sea level pressure fields. We demonstrate that decadal predictability is generally underestimated in CMIP5 models, which is closely related to the paradox. Models are likely to underestimate decadal predictability in regions where it is likely to have the paradox.The third objective is to determine if this underestimate of decadal predictability is, at least partially, due to missing ocean mesoscale processes and features in CMIP5 models. A suite of coupled model experiments is performed with an eddy-resolving and eddy-parameterized ocean component. Again, the results are discussed through the lens of the signal-to-noise paradox. Compared with eddy-parameterized models, less chance of existence for the paradox is seen in eddy-resolving models, particularly over eddy-rich regions, where increased decadal predictability is also identified. This enhanced predictability is possible due to the enhanced vertical connectivity, which is demonstrated through ocean vertical structure and the relationships between the deep ocean and surface processes. We argue that the presence of mesoscale ocean features and associated vertical connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox. Overall, this work summarizes major challenges facing decadal predictability and aims to understand decadal predictability from the perspectives of the internal atmospheric dynamics, signal-to-noise paradox, and ocean mesoscale features. These findings not only suggest potential opportunities to advance decadal climate predictability in future studies, but also provide guidance on future model development and initialization.
ISBN: 9798664745184Subjects--Topical Terms:
2079509
Climate change.
Subjects--Index Terms:
CCSM4
Understanding Decadal Climate Predictability in the Global Ocean.
LDR
:05014nmm a2200385 4500
001
2279752
005
20210823083435.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798664745184
035
$a
(MiAaPQ)AAI28091098
035
$a
AAI28091098
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Wei.
$3
1043738
245
1 0
$a
Understanding Decadal Climate Predictability in the Global Ocean.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
111 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
500
$a
Advisor: Kirtman, Ben.
502
$a
Thesis (Ph.D.)--University of Miami, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Due to considerable social and economic implications, there is a continuously increasing demand for decadal climate predictions. However, decadal predictions remain a challenging problem largely owing to the insufficient knowledge of decadal predictability. The overarching goal of this work is to understand decadal climate predictability in the global ocean. Specifically, this work is motivated by current challenges in decadal predictability and has three major objectives. The first objective is to investigate the limits and mechanisms of decadal predictability, particularly the unresolved role of internal atmospheric noise in decadal predictability. The interactive ensemble (IE) coupling technique is used to quantify how the internal atmospheric noise at the air-sea interface impacts decadal predictability. We apply the nonlinear local Lyapunov exponent method to the Community Climate System Model comparing control simulations with IE simulations. The global patterns of decadal predictability are shown for both models and observations and we find that the impact of internal atmospheric noise on decadal predictability is not a linear question and largely dependent on the background coupling and dynamics.The second objective is to address the so-called "signal-to-noise paradox". The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically too small and models seem to make better predictions of the observations than they predict themselves. We introduce a Markov model framework to represent the ensemble forecasts and reproduce the paradox, which is primarily dependent on the magnitude of the persistence and noise variance between models and observations. The Markov model framework is applied to the North Atlantic Oscillation index based on the coupled models from the fifth Coupled Model Intercomparison Project (CMIP5). The results suggest the widespread existence of the signal-to-noise paradox that may exist at different timescales. We re-examine decadal predictability from the lens of the signal-to-noise paradox in the context of CMIP5 models for the sea surface temperature and sea level pressure fields. We demonstrate that decadal predictability is generally underestimated in CMIP5 models, which is closely related to the paradox. Models are likely to underestimate decadal predictability in regions where it is likely to have the paradox.The third objective is to determine if this underestimate of decadal predictability is, at least partially, due to missing ocean mesoscale processes and features in CMIP5 models. A suite of coupled model experiments is performed with an eddy-resolving and eddy-parameterized ocean component. Again, the results are discussed through the lens of the signal-to-noise paradox. Compared with eddy-parameterized models, less chance of existence for the paradox is seen in eddy-resolving models, particularly over eddy-rich regions, where increased decadal predictability is also identified. This enhanced predictability is possible due to the enhanced vertical connectivity, which is demonstrated through ocean vertical structure and the relationships between the deep ocean and surface processes. We argue that the presence of mesoscale ocean features and associated vertical connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox. Overall, this work summarizes major challenges facing decadal predictability and aims to understand decadal predictability from the perspectives of the internal atmospheric dynamics, signal-to-noise paradox, and ocean mesoscale features. These findings not only suggest potential opportunities to advance decadal climate predictability in future studies, but also provide guidance on future model development and initialization.
590
$a
School code: 0125.
650
4
$a
Climate change.
$2
bicssc
$3
2079509
650
4
$a
Meteorology.
$3
542822
650
4
$a
Atmospheric sciences.
$3
3168354
653
$a
CCSM4
653
$a
Climate variability and change
653
$a
CMIP5 models
653
$a
Decadal predictability
653
$a
High-resolving modeling
653
$a
Interactive ensemble
690
$a
0725
690
$a
0404
690
$a
0557
710
2
$a
University of Miami.
$b
Meteorology and Physical Oceanography (Marine).
$3
2101480
773
0
$t
Dissertations Abstracts International
$g
82-03B.
790
$a
0125
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28091098
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9431485
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login