Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The Interstellar Medium Properties o...
~
Leung, Tsz Kuk Daisy .
Linked to FindBook
Google Book
Amazon
博客來
The Interstellar Medium Properties of High Redshift Galaxies.
Record Type:
Electronic resources : Monograph/item
Title/Author:
The Interstellar Medium Properties of High Redshift Galaxies./
Author:
Leung, Tsz Kuk Daisy .
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
Description:
321 p.
Notes:
Source: Dissertations Abstracts International, Volume: 81-12, Section: B.
Contained By:
Dissertations Abstracts International81-12B.
Subject:
Astronomy. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27669854
ISBN:
9798645486297
The Interstellar Medium Properties of High Redshift Galaxies.
Leung, Tsz Kuk Daisy .
The Interstellar Medium Properties of High Redshift Galaxies.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 321 p.
Source: Dissertations Abstracts International, Volume: 81-12, Section: B.
Thesis (Ph.D.)--Cornell University, 2020.
This item must not be sold to any third party vendors.
This is a dissertation in six chapters, where we aim to obtain a better understanding of the most luminous source populations at the peak epoch of cosmic star formation rate density using observational data collected with state-of-the-art facilities. Previous studies report star formation rates (SFR) comparable to and even exceeding the local ultra-luminous IR galaxy (ULIRG) for a population of dust-obscured (IR)-luminous starbursting galaxies discovered at z > 2 (dubbed dusty star-forming galaxies, DSFG), but the ULIRGs and DSFGs have different global star formation and interstellar medium (ISM) properties. Meanwhile, a picture connecting the evolution of dust-obscured starburst galaxies and the growth of supermassive black holes (SMBHs) has emerged under the "quasar-starburst co-evolutionary link" paradigm. This body of work examines the nature and origin of the most extreme DSFGs and the postulated quasar-starburst co-evolution picture by examining the ISM conditions, gas kinematics and morphologies of these high-z galaxy populations using a suite of radio/sub-millimeter interferometers (e.g., ALMA, the VLA, NOEMA), complemented by data taken with space-based facilities such as SOFIA and the HST. Leveraging multi-wavelength photometry and (sub-)kpc resolution imaging of CO and far-infrared (FIR)-bright lines (e.g.,[CII]) enabled by the latest instrument and facilities, we examine how the morphology of DSFG varies with molecular gas fractions and IR luminosities, and how the molecular gas fraction, IR luminosity, and active galactic nucleus (AGN) luminosity are related, as postulated in the quasar-starburst evolutionary picture; and study properties of the gas, stellar, and dust components of high-z DSFG and quasar host galaxies. In the detailed case studies of high-z quasars, we find that the decreased in molecular gas fraction at intermediate redshift (0 < z <1) compared to the peak epoch of star formation and BH accretion may be the main driver in the decline in the cosmic star formation history (SFH) and BH accretion rate density; we do not find evidence of AGN feedback on the molecular gas fraction in the intermediate redshift quasar RXJ1131; and that the SMBH in intermediate redshift quasars like RXJ1131 appear to have assembled its BH mass earlier than its stellar bulge. For quasars at z > 2, we find that a DSFG hosting a type-2 AGN shows molecular ISM properties consistent with being a hybrid source in the quasar-starburst evolutionary sequence. We also find that the AGN-corrected SFR of one of the most frequently studied high-z quasar (APM 08279+5255) is underestimated in previous work, and that high-z quasars likely have different dust distributions and compositions compared to nearby Seyfert galaxies. In the detailed case study of one of the most luminous DSFG at z∼3, we find direct evidence of disk-wide star formation and evidence suggesting its close resemblance to the local LIRG Arp 220. We also provide the first spatially resolved [CII] imaging at such redshift to examine the physics behind the L[CII]/LFIR −ΣFIR surface density relation and the so-called "[CII]-deficit" problem.
ISBN: 9798645486297Subjects--Topical Terms:
517668
Astronomy.
Subjects--Index Terms:
Active galactic nucleus
The Interstellar Medium Properties of High Redshift Galaxies.
LDR
:04263nmm a2200349 4500
001
2272994
005
20201105110317.5
008
220629s2020 ||||||||||||||||| ||eng d
020
$a
9798645486297
035
$a
(MiAaPQ)AAI27669854
035
$a
AAI27669854
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Leung, Tsz Kuk Daisy .
$3
3550418
245
1 4
$a
The Interstellar Medium Properties of High Redshift Galaxies.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
321 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-12, Section: B.
500
$a
Advisor: Cordes, James.
502
$a
Thesis (Ph.D.)--Cornell University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
This is a dissertation in six chapters, where we aim to obtain a better understanding of the most luminous source populations at the peak epoch of cosmic star formation rate density using observational data collected with state-of-the-art facilities. Previous studies report star formation rates (SFR) comparable to and even exceeding the local ultra-luminous IR galaxy (ULIRG) for a population of dust-obscured (IR)-luminous starbursting galaxies discovered at z > 2 (dubbed dusty star-forming galaxies, DSFG), but the ULIRGs and DSFGs have different global star formation and interstellar medium (ISM) properties. Meanwhile, a picture connecting the evolution of dust-obscured starburst galaxies and the growth of supermassive black holes (SMBHs) has emerged under the "quasar-starburst co-evolutionary link" paradigm. This body of work examines the nature and origin of the most extreme DSFGs and the postulated quasar-starburst co-evolution picture by examining the ISM conditions, gas kinematics and morphologies of these high-z galaxy populations using a suite of radio/sub-millimeter interferometers (e.g., ALMA, the VLA, NOEMA), complemented by data taken with space-based facilities such as SOFIA and the HST. Leveraging multi-wavelength photometry and (sub-)kpc resolution imaging of CO and far-infrared (FIR)-bright lines (e.g.,[CII]) enabled by the latest instrument and facilities, we examine how the morphology of DSFG varies with molecular gas fractions and IR luminosities, and how the molecular gas fraction, IR luminosity, and active galactic nucleus (AGN) luminosity are related, as postulated in the quasar-starburst evolutionary picture; and study properties of the gas, stellar, and dust components of high-z DSFG and quasar host galaxies. In the detailed case studies of high-z quasars, we find that the decreased in molecular gas fraction at intermediate redshift (0 < z <1) compared to the peak epoch of star formation and BH accretion may be the main driver in the decline in the cosmic star formation history (SFH) and BH accretion rate density; we do not find evidence of AGN feedback on the molecular gas fraction in the intermediate redshift quasar RXJ1131; and that the SMBH in intermediate redshift quasars like RXJ1131 appear to have assembled its BH mass earlier than its stellar bulge. For quasars at z > 2, we find that a DSFG hosting a type-2 AGN shows molecular ISM properties consistent with being a hybrid source in the quasar-starburst evolutionary sequence. We also find that the AGN-corrected SFR of one of the most frequently studied high-z quasar (APM 08279+5255) is underestimated in previous work, and that high-z quasars likely have different dust distributions and compositions compared to nearby Seyfert galaxies. In the detailed case study of one of the most luminous DSFG at z∼3, we find direct evidence of disk-wide star formation and evidence suggesting its close resemblance to the local LIRG Arp 220. We also provide the first spatially resolved [CII] imaging at such redshift to examine the physics behind the L[CII]/LFIR −ΣFIR surface density relation and the so-called "[CII]-deficit" problem.
590
$a
School code: 0058.
650
4
$a
Astronomy.
$3
517668
653
$a
Active galactic nucleus
653
$a
Galaxy evolution
653
$a
Gravitational lensing
653
$a
Observations
653
$a
Star formation
690
$a
0606
710
2
$a
Cornell University.
$b
Astronomy and Space Sciences.
$3
3549862
773
0
$t
Dissertations Abstracts International
$g
81-12B.
790
$a
0058
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27669854
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9425228
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login