語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Functional and Therapeutic Relevance...
~
Hansen, Landon John.
FindBook
Google Book
Amazon
博客來
Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma./
作者:
Hansen, Landon John.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
171 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Molecular biology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10825022
ISBN:
9781392192641
Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma.
Hansen, Landon John.
Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 171 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--Duke University, 2019.
This item is not available from ProQuest Dissertations & Theses.
Primary glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, with a median patient survival of only 15 months from the time of diagnosis. GBM is particularly challenging to treat due to its aggressive and invasive nature, and has proven resistant to therapeutic advances, with no significant improvement in outcomes over the past several decades. Understanding of the molecular characteristics of GBM, however, has improved dramatically, with genetic, epigenetic, and transcriptomic classifications now able to divide GBM into subtypes that provide prognostic information and guide the organization of clinical trials. One of the most frequent genetic alterations that has been identified in GBM is homozygous deletion of the methylthioadenosine phosphorylase (MTAP) gene, which occurs in 50% of all GBM cases. Despite its common occurrence, it is unclear what contribution MTAP loss makes in the pathogenesis of GBM or whether this genetic alteration can be used as a therapeutic target.MTAP is a metabolic enzyme in the salvage pathway of adenine and methionine and its absence results in the accumulation of its metabolic substrate, methylthioadenosine (MTA), within and around tumor cells. MTA is known to inhibit activity of methyltransferases, raising the possibility that MTA accumulation is interfering with regulatory processes within the cell.We utilized patient-derived GBM cell lines in vitro and GBM xenografts in vivo, to characterize consequence of MTAP deletion in GBM through analysis of DNA methylation, gene expression, and response to therapeutic agents. We show that MTAP loss promotes the formation of glioma stem-like cells through epigenomic dysregulation. We show these epigenetic changes influence gene expression patterns and alter the sensitivity to epigenome-modifying drugs. We also demonstrate that MTAP-null GBM cells are more tumorigenic in experimental models and that patients with MTAP deletion have poor disease outcomes. Finally, we show that targeting metabolic liabilities of MTAP-null cells through inhibition of de novo purine synthesis specifically depletes the therapy-resistant, stem-like cell subpopulation of GBM.As the final component of this work, we explore the impact of MTA accumulation in the tumor microenvironment. We found that MTA alters the function of immune cells through adenosine receptor signaling, suggesting that modulation of adenosine receptor signaling in GBM may improve the native immune response and the efficacy of immunotherapeutics in the treatment of this disease.This work thus establishes MTAP deletion as a pathogenic genetic alteration in the process of gliomagenesis by illustrating it's contribution to the formation of the cancer cell epigenomic landscape, stemness characteristics, growth, and response to therapeutic agents.
ISBN: 9781392192641Subjects--Topical Terms:
517296
Molecular biology.
Subjects--Index Terms:
Cancer stem cells
Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma.
LDR
:04204nmm a2200421 4500
001
2272232
005
20201105110003.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392192641
035
$a
(MiAaPQ)AAI10825022
035
$a
(MiAaPQ)duke:14761
035
$a
AAI10825022
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Hansen, Landon John.
$3
3549663
245
1 0
$a
Functional and Therapeutic Relevance of MTAP Deletion in Glioblastoma.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
171 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Yan, Hai;Wood, Kris.
502
$a
Thesis (Ph.D.)--Duke University, 2019.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be sold to any third party vendors.
520
$a
Primary glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, with a median patient survival of only 15 months from the time of diagnosis. GBM is particularly challenging to treat due to its aggressive and invasive nature, and has proven resistant to therapeutic advances, with no significant improvement in outcomes over the past several decades. Understanding of the molecular characteristics of GBM, however, has improved dramatically, with genetic, epigenetic, and transcriptomic classifications now able to divide GBM into subtypes that provide prognostic information and guide the organization of clinical trials. One of the most frequent genetic alterations that has been identified in GBM is homozygous deletion of the methylthioadenosine phosphorylase (MTAP) gene, which occurs in 50% of all GBM cases. Despite its common occurrence, it is unclear what contribution MTAP loss makes in the pathogenesis of GBM or whether this genetic alteration can be used as a therapeutic target.MTAP is a metabolic enzyme in the salvage pathway of adenine and methionine and its absence results in the accumulation of its metabolic substrate, methylthioadenosine (MTA), within and around tumor cells. MTA is known to inhibit activity of methyltransferases, raising the possibility that MTA accumulation is interfering with regulatory processes within the cell.We utilized patient-derived GBM cell lines in vitro and GBM xenografts in vivo, to characterize consequence of MTAP deletion in GBM through analysis of DNA methylation, gene expression, and response to therapeutic agents. We show that MTAP loss promotes the formation of glioma stem-like cells through epigenomic dysregulation. We show these epigenetic changes influence gene expression patterns and alter the sensitivity to epigenome-modifying drugs. We also demonstrate that MTAP-null GBM cells are more tumorigenic in experimental models and that patients with MTAP deletion have poor disease outcomes. Finally, we show that targeting metabolic liabilities of MTAP-null cells through inhibition of de novo purine synthesis specifically depletes the therapy-resistant, stem-like cell subpopulation of GBM.As the final component of this work, we explore the impact of MTA accumulation in the tumor microenvironment. We found that MTA alters the function of immune cells through adenosine receptor signaling, suggesting that modulation of adenosine receptor signaling in GBM may improve the native immune response and the efficacy of immunotherapeutics in the treatment of this disease.This work thus establishes MTAP deletion as a pathogenic genetic alteration in the process of gliomagenesis by illustrating it's contribution to the formation of the cancer cell epigenomic landscape, stemness characteristics, growth, and response to therapeutic agents.
590
$a
School code: 0066.
650
4
$a
Molecular biology.
$3
517296
650
4
$a
Cellular biology.
$3
3172791
650
4
$a
Oncology.
$3
751006
653
$a
Cancer stem cells
653
$a
Epigenetics
653
$a
Glioblastoma
653
$a
Methylthioadenosine
653
$a
Methylthioadenosine phosphorylase
653
$a
Targeted therapy
690
$a
0307
690
$a
0379
690
$a
0992
710
2
$a
Duke University.
$b
Molecular Cancer Biology.
$3
1023485
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0066
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10825022
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9424466
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入