Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Structural and Dynamic Studies of RN...
~
Merriman, Dawn Kellogg.
Linked to FindBook
Google Book
Amazon
博客來
Structural and Dynamic Studies of RNA Bulge Motifs Utilizing Nuclear Magnetic Resonance.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Structural and Dynamic Studies of RNA Bulge Motifs Utilizing Nuclear Magnetic Resonance./
Author:
Merriman, Dawn Kellogg.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
Description:
239 p.
Notes:
Source: Dissertations Abstracts International, Volume: 79-11, Section: B.
Contained By:
Dissertations Abstracts International79-11B.
Subject:
Chemistry. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10750029
ISBN:
9780355905991
Structural and Dynamic Studies of RNA Bulge Motifs Utilizing Nuclear Magnetic Resonance.
Merriman, Dawn Kellogg.
Structural and Dynamic Studies of RNA Bulge Motifs Utilizing Nuclear Magnetic Resonance.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 239 p.
Source: Dissertations Abstracts International, Volume: 79-11, Section: B.
Thesis (Ph.D.)--Duke University, 2018.
This item must not be sold to any third party vendors.
Bulges are ubiquitous building blocks of the three-dimensional structure of RNA. They help define the global structure of helices and points of flexibility allowing for functionally important dynamics, such as binding of proteins, ligands and small molecules to occur. This thesis utilizes a battery of nuclear magnetic resonance (NMR) methods and a model system of RNA bulge motifs, the transactivation response element (TAR) RNA from the human immunodeficiency virus type 1 (HIV-1), to characterize the dynamic energy landscape of bulges. Specifically investigating how it varies with bulge length, divalent cations, and in the presence of epi-transcriptomic modifications. Deleting a single bulge residue (C24) from trinucleotide HIV-1 TAR bulge shifts a pre-existing equilibrium from the unstacked to a stacked conformation in which the bulge residues flip out of the helix and are highly flexible at the picosecond-to-nanosecond timescale. However, the mutation minimally impacts microsecond-to-millisecond conformational exchange directed towards two low-populated and short-lived excited conformational states that form through a reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond timescale. Therefore, minor changes in bulge topology preserve motional modes occurring over the picosecond-to-millisecond timescales but alter the relative populations of the sampled states or cause subtle changes in their conformational features. The impact of more broadly varying the length of the TAR poly-pyrimidine bulge (n = 1, 2, 3, 4 and 7) on inter-helical dynamics has been studied across a range of Mg2+ concentrations. In the absence of Mg 2+ (25 mM monovalent salt), n ≥ 3 bulges adopt predominantly unstacked conformations (stacked population <15%) whereas 1-bulge and 2-bulge motifs adopt predominantly stacked conformations (stacked population >85%). The 2-bulge motif is biased toward linear conformations and increasing the bulge length leads to broader inter-helical distributions and structures that are on average more kinked. In the presence of 3 mM Mg2+, the helices predominantly coaxially stack (stacked population >75%), regardless of bulge length, and the midpoint for the Mg2+-dependent stacking transition does not vary substantially (within 3-fold) with bulge length. In the absence of Mg2+, the difference between the free energy of inter-helical coaxial stacking across the bulge variants is estimated to be ≈2.9 kcal/mol, based on an NMR chemical shift mapping approach, with stacking being more energetically disfavored for the longer bulges. This difference decreases to ≈0.4 kcal/mol in the presence of 3 mM Mg2+. It is proposed that Mg2+ helps to neutralize the growing electrostatic repulsion in the stacked state with increasing bulge length thus increasing the number of co-axial conformations that can be sampled. N6-Methyladenosine (m6A) and N1-Methylpurine (m1A and m1G) xx or just refer to m1G?xx are post-transcriptional RNA modifications that are proposed to influence RNA function through mechanisms that can involve modulation of RNA structure. m6A is thought to modulate RNA structure by destabilizing base pairing. Here, it is shown that m6A can stabilize A•U base pairing and overall RNA structure when placed within the context of a bulge motif. m1A has also been shown to potently destabilize RNA duplexes due to their inability to favorably accommodate Hoogsteen base pairing. It is shown that such Hoogsteen base pairs can form in RNA when placed in the context of a bulge motif. Taken together, the studies show that the dynamic energy landscape of polypyridine bulges is highly robust with respect to changes in bulge length allowing for gradual variations in the population and energetics of common conformations. Mg2+ plays an important role in smoothening these variations most likely by diminishing electrostatic contributions that could vary significantly across bulges of different length. The results also show that the structural impact of epi-transcriptomic modifications can be greatly altered relative to duplex RNA when targeting bulge motifs.
ISBN: 9780355905991Subjects--Topical Terms:
516420
Chemistry.
Subjects--Index Terms:
Bulges
Structural and Dynamic Studies of RNA Bulge Motifs Utilizing Nuclear Magnetic Resonance.
LDR
:05457nmm a2200409 4500
001
2272176
005
20201105105953.5
008
220629s2018 ||||||||||||||||| ||eng d
020
$a
9780355905991
035
$a
(MiAaPQ)AAI10750029
035
$a
(MiAaPQ)duke:14562
035
$a
AAI10750029
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Merriman, Dawn Kellogg.
$3
3549605
245
1 0
$a
Structural and Dynamic Studies of RNA Bulge Motifs Utilizing Nuclear Magnetic Resonance.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
239 p.
500
$a
Source: Dissertations Abstracts International, Volume: 79-11, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Al-Hashimi, Hashim M.
502
$a
Thesis (Ph.D.)--Duke University, 2018.
506
$a
This item must not be sold to any third party vendors.
520
$a
Bulges are ubiquitous building blocks of the three-dimensional structure of RNA. They help define the global structure of helices and points of flexibility allowing for functionally important dynamics, such as binding of proteins, ligands and small molecules to occur. This thesis utilizes a battery of nuclear magnetic resonance (NMR) methods and a model system of RNA bulge motifs, the transactivation response element (TAR) RNA from the human immunodeficiency virus type 1 (HIV-1), to characterize the dynamic energy landscape of bulges. Specifically investigating how it varies with bulge length, divalent cations, and in the presence of epi-transcriptomic modifications. Deleting a single bulge residue (C24) from trinucleotide HIV-1 TAR bulge shifts a pre-existing equilibrium from the unstacked to a stacked conformation in which the bulge residues flip out of the helix and are highly flexible at the picosecond-to-nanosecond timescale. However, the mutation minimally impacts microsecond-to-millisecond conformational exchange directed towards two low-populated and short-lived excited conformational states that form through a reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond timescale. Therefore, minor changes in bulge topology preserve motional modes occurring over the picosecond-to-millisecond timescales but alter the relative populations of the sampled states or cause subtle changes in their conformational features. The impact of more broadly varying the length of the TAR poly-pyrimidine bulge (n = 1, 2, 3, 4 and 7) on inter-helical dynamics has been studied across a range of Mg2+ concentrations. In the absence of Mg 2+ (25 mM monovalent salt), n ≥ 3 bulges adopt predominantly unstacked conformations (stacked population <15%) whereas 1-bulge and 2-bulge motifs adopt predominantly stacked conformations (stacked population >85%). The 2-bulge motif is biased toward linear conformations and increasing the bulge length leads to broader inter-helical distributions and structures that are on average more kinked. In the presence of 3 mM Mg2+, the helices predominantly coaxially stack (stacked population >75%), regardless of bulge length, and the midpoint for the Mg2+-dependent stacking transition does not vary substantially (within 3-fold) with bulge length. In the absence of Mg2+, the difference between the free energy of inter-helical coaxial stacking across the bulge variants is estimated to be ≈2.9 kcal/mol, based on an NMR chemical shift mapping approach, with stacking being more energetically disfavored for the longer bulges. This difference decreases to ≈0.4 kcal/mol in the presence of 3 mM Mg2+. It is proposed that Mg2+ helps to neutralize the growing electrostatic repulsion in the stacked state with increasing bulge length thus increasing the number of co-axial conformations that can be sampled. N6-Methyladenosine (m6A) and N1-Methylpurine (m1A and m1G) xx or just refer to m1G?xx are post-transcriptional RNA modifications that are proposed to influence RNA function through mechanisms that can involve modulation of RNA structure. m6A is thought to modulate RNA structure by destabilizing base pairing. Here, it is shown that m6A can stabilize A•U base pairing and overall RNA structure when placed within the context of a bulge motif. m1A has also been shown to potently destabilize RNA duplexes due to their inability to favorably accommodate Hoogsteen base pairing. It is shown that such Hoogsteen base pairs can form in RNA when placed in the context of a bulge motif. Taken together, the studies show that the dynamic energy landscape of polypyridine bulges is highly robust with respect to changes in bulge length allowing for gradual variations in the population and energetics of common conformations. Mg2+ plays an important role in smoothening these variations most likely by diminishing electrostatic contributions that could vary significantly across bulges of different length. The results also show that the structural impact of epi-transcriptomic modifications can be greatly altered relative to duplex RNA when targeting bulge motifs.
590
$a
School code: 0066.
650
4
$a
Chemistry.
$3
516420
650
4
$a
Biochemistry.
$3
518028
650
4
$a
Biophysics.
$3
518360
653
$a
Bulges
653
$a
Dynamics
653
$a
Folding
653
$a
Modifications
653
$a
NMR
653
$a
RNA
690
$a
0485
690
$a
0487
690
$a
0786
710
2
$a
Duke University.
$b
Chemistry.
$3
1064507
773
0
$t
Dissertations Abstracts International
$g
79-11B.
790
$a
0066
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10750029
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9424410
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login