語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Novel Applications and Extensions fo...
~
Tan, Yaoyuan Vincent.
FindBook
Google Book
Amazon
博客來
Novel Applications and Extensions for Bayesian Additive Regression Trees (BART) in Prediction, Imputation, and Causal Inference.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Novel Applications and Extensions for Bayesian Additive Regression Trees (BART) in Prediction, Imputation, and Causal Inference./
作者:
Tan, Yaoyuan Vincent.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
201 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Contained By:
Dissertations Abstracts International80-09B.
標題:
Biostatistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13840388
ISBN:
9780438885981
Novel Applications and Extensions for Bayesian Additive Regression Trees (BART) in Prediction, Imputation, and Causal Inference.
Tan, Yaoyuan Vincent.
Novel Applications and Extensions for Bayesian Additive Regression Trees (BART) in Prediction, Imputation, and Causal Inference.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 201 p.
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Thesis (Ph.D.)--University of Michigan, 2018.
This item must not be added to any third party search indexes.
The Bayesian additive regression trees (BART) is a method proposed by Chipman et al. (2010) that can handle non-linear main and multiple-way interaction effects for independent continuous or binary outcomes. It has enjoyed much success in areas like causal inference, economics, environmental sciences, and genomics. However, extensions of BART and application of these extensions are limited. This thesis discusses three novel applications and extensions for BART. We first discuss how BART can be extended to clustered outcomes by adding a random intercept. This work was motivated by the need to accurately predict driver behavior using observable speed and location information with application to communication of key human-driver intention to nearby vehicles in traffic. Although our extension can be considered a special case of the spatial BART (Zhang et al., 2007), our approach differs by providing a relatively simple algorithm that allows application to clustered binary outcomes. We next focus on the use of BART in missing data settings. Doubly robust (DR) methods allow consistent estimation of population means when either non-response propensity or modeling of the mean of the outcome is correctly specified. Kang and Schafer (2007) showed that DR methods produce biased and inefficient estimates when both propensity and mean models are misspecified. We consider the use of BART for modeling means and/or propensities to provide a ``robust-squared'' estimator that reduces bias and improves efficiency. We demonstrate this result, using simulations, for the two commonly used DR methods: Augmented Inverse Probability Weighting (AIPWT, Robbins et al., 1994) and penalized splines of propensity prediction (PSPP, Zhang and Little, 2009). We successfully applied our proposed model to two national crash datasets to impute missing change in deceleration values (delta-v) and missing Blood Alcohol Concentration (BAC) levels respectively. Our final effort considers how a negative wealth shock (sudden large decline in wealth) affects the cognitive outcome of late middle aged US adults using the Health Retirement Study, a longitudinal study of US adults, enrolled at age 50 and older and surveyed biennially since 1992. Our analysis faced three issues: lack of randomization, confounding by indication, and censoring of the cognitive outcome by a substantial number of deaths in our subjects. Marginal structural models (MSM), a commonly used method to deal with censoring by death, is arguably inappropriate because it upweights subjects who are more likely to die, creating a pseudo-population which resembles one where death is absent. We propose to compare the negative wealth shock effect only among subjects who survived under both sets of treatment regimens - a special case of principal stratification (Frangakis and Rubin, 2002). Because the counterfactual survival status would be unobserved, we imputed their survival status and restrict analysis to subjects who were observed and predicted to survive under both treatment regimes. We used a modified version of penalized spline of propensity methods in treatment comparisons (PENCOMP, Zhou et. al, 2018) to obtain a robust imputation of the counterfactual cognitive outcomes. Finally, we consider several possible extensions of these efforts for future work.
ISBN: 9780438885981Subjects--Topical Terms:
1002712
Biostatistics.
Subjects--Index Terms:
Bayesian additive regression trees
Novel Applications and Extensions for Bayesian Additive Regression Trees (BART) in Prediction, Imputation, and Causal Inference.
LDR
:04672nmm a2200373 4500
001
2269039
005
20200908082316.5
008
220629s2018 ||||||||||||||||| ||eng d
020
$a
9780438885981
035
$a
(MiAaPQ)AAI13840388
035
$a
(MiAaPQ)umichrackham:002065
035
$a
AAI13840388
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Tan, Yaoyuan Vincent.
$3
3546344
245
1 0
$a
Novel Applications and Extensions for Bayesian Additive Regression Trees (BART) in Prediction, Imputation, and Causal Inference.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
201 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Elliott, Michael R.
502
$a
Thesis (Ph.D.)--University of Michigan, 2018.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
The Bayesian additive regression trees (BART) is a method proposed by Chipman et al. (2010) that can handle non-linear main and multiple-way interaction effects for independent continuous or binary outcomes. It has enjoyed much success in areas like causal inference, economics, environmental sciences, and genomics. However, extensions of BART and application of these extensions are limited. This thesis discusses three novel applications and extensions for BART. We first discuss how BART can be extended to clustered outcomes by adding a random intercept. This work was motivated by the need to accurately predict driver behavior using observable speed and location information with application to communication of key human-driver intention to nearby vehicles in traffic. Although our extension can be considered a special case of the spatial BART (Zhang et al., 2007), our approach differs by providing a relatively simple algorithm that allows application to clustered binary outcomes. We next focus on the use of BART in missing data settings. Doubly robust (DR) methods allow consistent estimation of population means when either non-response propensity or modeling of the mean of the outcome is correctly specified. Kang and Schafer (2007) showed that DR methods produce biased and inefficient estimates when both propensity and mean models are misspecified. We consider the use of BART for modeling means and/or propensities to provide a ``robust-squared'' estimator that reduces bias and improves efficiency. We demonstrate this result, using simulations, for the two commonly used DR methods: Augmented Inverse Probability Weighting (AIPWT, Robbins et al., 1994) and penalized splines of propensity prediction (PSPP, Zhang and Little, 2009). We successfully applied our proposed model to two national crash datasets to impute missing change in deceleration values (delta-v) and missing Blood Alcohol Concentration (BAC) levels respectively. Our final effort considers how a negative wealth shock (sudden large decline in wealth) affects the cognitive outcome of late middle aged US adults using the Health Retirement Study, a longitudinal study of US adults, enrolled at age 50 and older and surveyed biennially since 1992. Our analysis faced three issues: lack of randomization, confounding by indication, and censoring of the cognitive outcome by a substantial number of deaths in our subjects. Marginal structural models (MSM), a commonly used method to deal with censoring by death, is arguably inappropriate because it upweights subjects who are more likely to die, creating a pseudo-population which resembles one where death is absent. We propose to compare the negative wealth shock effect only among subjects who survived under both sets of treatment regimens - a special case of principal stratification (Frangakis and Rubin, 2002). Because the counterfactual survival status would be unobserved, we imputed their survival status and restrict analysis to subjects who were observed and predicted to survive under both treatment regimes. We used a modified version of penalized spline of propensity methods in treatment comparisons (PENCOMP, Zhou et. al, 2018) to obtain a robust imputation of the counterfactual cognitive outcomes. Finally, we consider several possible extensions of these efforts for future work.
590
$a
School code: 0127.
650
4
$a
Biostatistics.
$3
1002712
653
$a
Bayesian additive regression trees
653
$a
Causal inference
653
$a
Imputation
653
$a
Prediction
690
$a
0308
710
2
$a
University of Michigan.
$b
Biostatistics.
$3
3352160
773
0
$t
Dissertations Abstracts International
$g
80-09B.
790
$a
0127
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13840388
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9421273
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入