Compressive sensing in health care
Khosravy, Mahdi.

Linked to FindBook      Google Book      Amazon      博客來     
  • Compressive sensing in health care
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Compressive sensing in health care/ edited by Mahdi Khosravy, Nilanjan Dey, Carlos A. Duque.
    other author: Khosravy, Mahdi.
    Published: London :Academic Press, : 2020.,
    Description: 1 online resource.
    Notes: Includes index.
    [NT 15003449]: Front Cover -- Compressive Sensing in Healthcare -- Copyright -- Contents -- List of contributors -- 1 Compressive sensing theoretical foundations in a nutshell -- 1.1 Introduction -- 1.2 Digital signal acquisition -- 1.3 Vectorial representation of signal -- l1 norm -- l2 norm -- l∞norm -- Spheres made by different lp norms as distance criterion -- Basis/dictionary -- Orthonormal basis/dictionary -- Frame/ over-complete dictionary -- Alternate/dual frame -- 1.4 Sparsity -- k-sparse signal -- Non-linearity of sparsity -- Sparsity and compressibility -- 1.5 Compressive sensing
    [NT 15003449]: Compressive sensing model -- 1.6 Essential properties of compressive sensing matrix -- 1.6.1 Null space property (NSP) -- The essence of the concept of recovery -- Maximum compression in compressive sensing (lower bound of m) -- 1.6.2 Restricted isometry property -- 1.6.3 Coherence a simple way to check NSP -- Relation between coherence and spark of a matrix -- Coherence approach to RIP -- 1.7 Summary -- 1.A -- Null space property of order 2k -- References -- 2 Recovery in compressive sensing: a review -- 2.1 Introduction -- 2.1.1 Compressive sensing formulation
    [NT 15003449]: 2.2 Criteria required for a compressive sensing matrix -- 2.2.1 Null space property -- Null space property of order k -- 2.2.1.1 Uniqueness theorem [46] -- Maximum compression in compressive sensing -- 2.2.2 Restricted isometry property -- 2.2.3 Coherence property -- 2.2.3.1 Coherence and spark of a matrix -- 2.2.3.2 The upper bound of sparsity level -- 2.3 Recovery -- 2.3.1 Recovery via minimization of l1 norm -- 2.3.2 Greedy algorithms -- 2.3.2.1 Pursuits -- 2.3.2.2Matching pursuit -- 2.3.2.3 Orthogonal matching pursuit -- 2.3.2.4 Iterative hard thresholding -- 2.4 Summary -- References
    [NT 15003449]: Measure SGini -- 3.5 Summary -- References -- 4 Compressive sensing in practice and potential advancements -- 4.1 Introduction -- 4.2 Compressive sensing theory -- 4.3 Example compressive sensing implementations -- 4.3.1 Compressivesensing in physiological signal monitoring -- In the eld application results -- 4.3.2 Compressive sensing in THEMIS imaging -- In-the- eld application results -- 4.4 Review of CS literature -- 4.4.1 Practical manifestations of theoretical bounds -- 4.5 Advancements in compressive sensing -- 4.5.1 Personalized basis -- Challenges
    Subject: Compressed sensing (Telecommunication) -
    Online resource: https://www.sciencedirect.com/science/book/9780128212479
    ISBN: 9780128212486 (electronic bk.)
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login