語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Polynomial one-cocycles for knots an...
~
Fiedler, Thomas.
FindBook
Google Book
Amazon
博客來
Polynomial one-cocycles for knots and closed braids /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Polynomial one-cocycles for knots and closed braids // Thomas Fiedler.
作者:
Fiedler, Thomas.
出版者:
Singapore ;World Scientific, : c2020. ,
面頁冊數:
xxiii, 229 p. :ill. ;24 cm.
標題:
Knot polynomials. -
ISBN:
9789811210297
Polynomial one-cocycles for knots and closed braids /
Fiedler, Thomas.
Polynomial one-cocycles for knots and closed braids /
Thomas Fiedler. - Singapore ;World Scientific,c2020. - xxiii, 229 p. :ill. ;24 cm. - Series on knots and everything,v. 64 0219-9769 ;. - K & E series on knots and everything,v. 64..
Includes bibliographical references (p. 221-225) and index.
"Traditionally, knot theory deals with diagrams of knots and the search of invariants of diagrams which are invariant under the well known Reidemeister moves. This book goes one step beyond: it gives a method to construct invariants for one parameter famillies of diagrams and which are invariant under 'higher' Reidemeister moves. Luckily, knots in 3-space, often called classical knots, can be transformed into knots in the solid torus without loss of information. It turns out that knots in the solid torus have a particular rich topological moduli space. It contains many 'canonical' loops to which the invariants for one parameter families can be applied, in order to get a new sort of invariants for classical knots."--Provided by publisher.
ISBN: 9789811210297US98.00Subjects--Topical Terms:
3470139
Knot polynomials.
LC Class. No.: QC20.7.K56 / F54 2020
Dewey Class. No.: 514.224
Polynomial one-cocycles for knots and closed braids /
LDR
:01429cam a2200193 a 4500
001
2224773
003
OCoLC
005
20200304022701.0
008
210125s2020 si a b 001 0 eng d
020
$a
9789811210297
$q
(hbk.) :
$c
US98.00
020
$a
9811210292
$q
(hbk.)
040
$a
YDX
$b
eng
$c
YDX
$d
IND
$d
SINLB
$d
OCLCF
$d
CUY
050
# 4
$a
QC20.7.K56
$b
F54 2020
082
0 4
$a
514.224
$2
23
100
1
$a
Fiedler, Thomas.
$3
3470137
245
1 0
$a
Polynomial one-cocycles for knots and closed braids /
$c
Thomas Fiedler.
260
#
$a
Singapore ;
$a
Hackensack :
$b
World Scientific,
$c
c2020.
300
$a
xxiii, 229 p. :
$b
ill. ;
$c
24 cm.
490
1
$a
Series on knots and everything,
$x
0219-9769 ;
$v
v. 64
504
$a
Includes bibliographical references (p. 221-225) and index.
520
#
$a
"Traditionally, knot theory deals with diagrams of knots and the search of invariants of diagrams which are invariant under the well known Reidemeister moves. This book goes one step beyond: it gives a method to construct invariants for one parameter famillies of diagrams and which are invariant under 'higher' Reidemeister moves. Luckily, knots in 3-space, often called classical knots, can be transformed into knots in the solid torus without loss of information. It turns out that knots in the solid torus have a particular rich topological moduli space. It contains many 'canonical' loops to which the invariants for one parameter families can be applied, in order to get a new sort of invariants for classical knots."--Provided by publisher.
650
# 0
$a
Knot polynomials.
$3
3470139
830
0
$a
K & E series on knots and everything,
$x
0219-9769 ;
$v
v. 64.
$3
3470138
筆 0 讀者評論
採購/卷期登收資訊
壽豐校區(SF Campus)
-
最近登收卷期:
1 (2021/04/08)
明細
館藏地:
全部
六樓西文書區HC-Z(6F Western Language Books)
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W0073620
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QC20.7.K56 F54 2020
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入