語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonlinear Multilevel Model Selection...
~
Christensen, Wendy.
FindBook
Google Book
Amazon
博客來
Nonlinear Multilevel Model Selection Using Information Criteria.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonlinear Multilevel Model Selection Using Information Criteria./
作者:
Christensen, Wendy.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
155 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13900473
ISBN:
9781392297230
Nonlinear Multilevel Model Selection Using Information Criteria.
Christensen, Wendy.
Nonlinear Multilevel Model Selection Using Information Criteria.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 155 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2019.
This item must not be sold to any third party vendors.
Multilevel modeling is a common approach to modeling longitudinal change in behavioral sciences. While many researchers use linear functional forms to model change across time, researchers sometimes anticipate nonlinear change. In such cases, researchers often fit polynomial functional forms, such as quadratic or cubic forms. Polynomial functional forms are suitable in many situations, but there are other functional forms that could potentially better match the researcher's theory about the nature of the longitudinal change. "Truly" nonlinear models, such as exponential and logistic models, have been used to model biological phenomena and may also be useful for psychological research. Such models, however, are non-nested, meaning that likelihood ratio tests cannot be used to select among models if one or more truly nonlinear models are in the candidate model set. Information criteria offer a flexible framework for model selection that can accommodate truly nonlinear models, but there currently is no research directly exploring the ability of information criteria to select truly nonlinear multilevel models. In this dissertation, two Monte Carlo simulation studies were conducted to examine the performance of two frequently used information criteria: AIC and BIC. The goal of the first study was to examine their ability to select unconditional models with correctly specified nonlinear functional forms. Higher L1 and L2 sample sizes, a higher ICC, and greater distinction between nonlinear functional forms generally improved correct model selection rates, but BIC appeared to be better than AIC when identifying more distinct nonlinear functional forms and AIC appeared to be better when the forms were less distinct. The goal of the second study was to examine the ability of AIC and BIC to select a model with a "more correct" predictor set when the underlying functional form was truly nonlinear. In many cases, information criteria were able to identify models determined to be more correct, but no clear pattern emerged between AIC and BIC. Finally, the utility of truly nonlinear functional forms was demonstrated in two behavioral health applications, both of which contained substantively interesting nonlinear trends that would have been missed if analysis had been limited to the linear functional form.
ISBN: 9781392297230Subjects--Topical Terms:
517247
Statistics.
Nonlinear Multilevel Model Selection Using Information Criteria.
LDR
:03404nmm a2200325 4500
001
2207708
005
20190920102406.5
008
201008s2019 ||||||||||||||||| ||eng d
020
$a
9781392297230
035
$a
(MiAaPQ)AAI13900473
035
$a
(MiAaPQ)ucla:18072
035
$a
AAI13900473
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Christensen, Wendy.
$3
3434696
245
1 0
$a
Nonlinear Multilevel Model Selection Using Information Criteria.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
155 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Krull, Jennifer L.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Multilevel modeling is a common approach to modeling longitudinal change in behavioral sciences. While many researchers use linear functional forms to model change across time, researchers sometimes anticipate nonlinear change. In such cases, researchers often fit polynomial functional forms, such as quadratic or cubic forms. Polynomial functional forms are suitable in many situations, but there are other functional forms that could potentially better match the researcher's theory about the nature of the longitudinal change. "Truly" nonlinear models, such as exponential and logistic models, have been used to model biological phenomena and may also be useful for psychological research. Such models, however, are non-nested, meaning that likelihood ratio tests cannot be used to select among models if one or more truly nonlinear models are in the candidate model set. Information criteria offer a flexible framework for model selection that can accommodate truly nonlinear models, but there currently is no research directly exploring the ability of information criteria to select truly nonlinear multilevel models. In this dissertation, two Monte Carlo simulation studies were conducted to examine the performance of two frequently used information criteria: AIC and BIC. The goal of the first study was to examine their ability to select unconditional models with correctly specified nonlinear functional forms. Higher L1 and L2 sample sizes, a higher ICC, and greater distinction between nonlinear functional forms generally improved correct model selection rates, but BIC appeared to be better than AIC when identifying more distinct nonlinear functional forms and AIC appeared to be better when the forms were less distinct. The goal of the second study was to examine the ability of AIC and BIC to select a model with a "more correct" predictor set when the underlying functional form was truly nonlinear. In many cases, information criteria were able to identify models determined to be more correct, but no clear pattern emerged between AIC and BIC. Finally, the utility of truly nonlinear functional forms was demonstrated in two behavioral health applications, both of which contained substantively interesting nonlinear trends that would have been missed if analysis had been limited to the linear functional form.
590
$a
School code: 0031.
650
4
$a
Statistics.
$3
517247
650
4
$a
Quantitative psychology.
$3
2144748
690
$a
0463
690
$a
0632
710
2
$a
University of California, Los Angeles.
$b
Psychology.
$3
2103527
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0031
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13900473
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9384257
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入