Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Dynamics of Marine Microbial Metabol...
~
Casey, John R.
Linked to FindBook
Google Book
Amazon
博客來
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA./
Author:
Casey, John R.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
Description:
217 p.
Notes:
Source: Dissertation Abstracts International, Volume: 79-01(E), Section: B.
Contained By:
Dissertation Abstracts International79-01B(E).
Subject:
Biological oceanography. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10656565
ISBN:
9780355264470
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA.
Casey, John R.
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 217 p.
Source: Dissertation Abstracts International, Volume: 79-01(E), Section: B.
Thesis (Ph.D.)--University of Hawai'i at Manoa, 2017.
Marine microbial communities influence global biogeochemical cycles by coupling the transduction of free energy to the transformation of Earth's essential bio-elements: H, C, N, O, P, and S. The web of interactions between these processes is extraordinarily complex, though fundamental physical and thermodynamic principles should describe its dynamics. In this collection of 5 studies, aspects of the complexity of marine microbial metabolism and physiology were investigated as they interact with biogeochemical cycles and direct the flow of energy within the Station ALOHA surface layer microbial community. In Chapter 1, and at the broadest level of complexity discussed, a method to relate cell size to metabolic activity was developed to evaluate allometric power laws at fine scales within picoplankton populations. Although size was predictive of metabolic rates, within-population power laws deviated from the broader size spectrum, suggesting metabolic diversity as a key determinant of microbial activity. In Chapter 2, a set of guidelines was proposed by which organic substrates are selected and utilized by the heterotrophic community based on their nitrogen content, carbon content, and energy content. A hierarchical experimental design suggested that the heterotrophic microbial community prefers high nitrogen content but low energy density substrates, while carbon content was not important. In Chapter 3, a closer look at the light-dependent dynamics of growth on a single organic substrate, glycolate, suggested that growth yields were improved by photoheterotrophy. The remaining chapters were based on the development of a genome-scale metabolic network reconstruction of the cyanobacterium Prochlorococcus to probe its metabolic capabilities and quantify metabolic fluxes. Findings described in Chapter 4 pointed to evolution of the Prochlorococcus metabolic network to optimize growth at low phosphate concentrations. Finally, in Chapter 5 and at the finest scale of complexity, a method was developed to predict hourly changes in both physiology and metabolic fluxes in Prochlorococcus by incorporating gene expression time-series data within the metabolic network model. Growth rates predicted by this method more closely matched experimental data, and diel changes in elemental composition and the energy content of biomass were predicted. Collectively, these studies identify and quantify the potential impact of variations in metabolic and physiological traits on the melee of microbial community interactions.
ISBN: 9780355264470Subjects--Topical Terms:
2122748
Biological oceanography.
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA.
LDR
:03428nmm a2200277 4500
001
2158858
005
20180618102637.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355264470
035
$a
(MiAaPQ)AAI10656565
035
$a
AAI10656565
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Casey, John R.
$3
3346704
245
1 0
$a
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
217 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-01(E), Section: B.
500
$a
Adviser: David Karl.
502
$a
Thesis (Ph.D.)--University of Hawai'i at Manoa, 2017.
520
$a
Marine microbial communities influence global biogeochemical cycles by coupling the transduction of free energy to the transformation of Earth's essential bio-elements: H, C, N, O, P, and S. The web of interactions between these processes is extraordinarily complex, though fundamental physical and thermodynamic principles should describe its dynamics. In this collection of 5 studies, aspects of the complexity of marine microbial metabolism and physiology were investigated as they interact with biogeochemical cycles and direct the flow of energy within the Station ALOHA surface layer microbial community. In Chapter 1, and at the broadest level of complexity discussed, a method to relate cell size to metabolic activity was developed to evaluate allometric power laws at fine scales within picoplankton populations. Although size was predictive of metabolic rates, within-population power laws deviated from the broader size spectrum, suggesting metabolic diversity as a key determinant of microbial activity. In Chapter 2, a set of guidelines was proposed by which organic substrates are selected and utilized by the heterotrophic community based on their nitrogen content, carbon content, and energy content. A hierarchical experimental design suggested that the heterotrophic microbial community prefers high nitrogen content but low energy density substrates, while carbon content was not important. In Chapter 3, a closer look at the light-dependent dynamics of growth on a single organic substrate, glycolate, suggested that growth yields were improved by photoheterotrophy. The remaining chapters were based on the development of a genome-scale metabolic network reconstruction of the cyanobacterium Prochlorococcus to probe its metabolic capabilities and quantify metabolic fluxes. Findings described in Chapter 4 pointed to evolution of the Prochlorococcus metabolic network to optimize growth at low phosphate concentrations. Finally, in Chapter 5 and at the finest scale of complexity, a method was developed to predict hourly changes in both physiology and metabolic fluxes in Prochlorococcus by incorporating gene expression time-series data within the metabolic network model. Growth rates predicted by this method more closely matched experimental data, and diel changes in elemental composition and the energy content of biomass were predicted. Collectively, these studies identify and quantify the potential impact of variations in metabolic and physiological traits on the melee of microbial community interactions.
590
$a
School code: 0085.
650
4
$a
Biological oceanography.
$3
2122748
690
$a
0416
710
2
$a
University of Hawai'i at Manoa.
$b
Oceanography.
$3
3282820
773
0
$t
Dissertation Abstracts International
$g
79-01B(E).
790
$a
0085
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10656565
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9358405
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login