Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Moduli of Bridgeland stable objects ...
~
Nuer, Howard J.
Linked to FindBook
Google Book
Amazon
博客來
Moduli of Bridgeland stable objects on an Enriques surface.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Moduli of Bridgeland stable objects on an Enriques surface./
Author:
Nuer, Howard J.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
Description:
130 p.
Notes:
Source: Dissertation Abstracts International, Volume: 78-04(E), Section: B.
Contained By:
Dissertation Abstracts International78-04B(E).
Subject:
Mathematics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10291851
ISBN:
9781369350241
Moduli of Bridgeland stable objects on an Enriques surface.
Nuer, Howard J.
Moduli of Bridgeland stable objects on an Enriques surface.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 130 p.
Source: Dissertation Abstracts International, Volume: 78-04(E), Section: B.
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 2016.
We construct projective moduli spaces of semistable objects on an Enriques surface for generic Bridgeland stability condition. On the way, we prove the non-emptiness of MH,Ys( v), the moduli space of Gieseker stable sheaves on an Enriques surface Y with Mukai vector v of positive rank with respect to a generic polarization H. In the case of a primitive Mukai vector on an unnodal Enriques surface, i.e. one containing no smooth rational curves, we prove irreducibility of MH,Y( v) as well. Using Bayer and Macri's construction of a natural nef divisor associated to a stability condition, we explore the relation between wall-crossing in the stability manifold and the minimal model program for Bridgeland moduli spaces. We give three applications of our machinery to obtain new information about the classical moduli spaces of Gieseker-stable sheaves: 1) We obtain a region in the ample cone of the moduli space of Gieseker-stable sheaves over Enriques surfaces. 2) We determine the nef cone of the Hilbert scheme of n points on an unnodal Enriques surface in terms of its half-pencils and the Cossec-Dolgachev &phis;-function. 3) We recover some classical results on linear systems on unnodal Enriques surfaces and obtain some new ones about n-very ample line bundles.
ISBN: 9781369350241Subjects--Topical Terms:
515831
Mathematics.
Moduli of Bridgeland stable objects on an Enriques surface.
LDR
:02237nmm a2200301 4500
001
2155458
005
20180426091047.5
008
190424s2016 ||||||||||||||||| ||eng d
020
$a
9781369350241
035
$a
(MiAaPQ)AAI10291851
035
$a
(MiAaPQ)rutgersnb:7129
035
$a
AAI10291851
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Nuer, Howard J.
$3
3343191
245
1 0
$a
Moduli of Bridgeland stable objects on an Enriques surface.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
130 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-04(E), Section: B.
500
$a
Adviser: Lev Borisov.
502
$a
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 2016.
520
$a
We construct projective moduli spaces of semistable objects on an Enriques surface for generic Bridgeland stability condition. On the way, we prove the non-emptiness of MH,Ys( v), the moduli space of Gieseker stable sheaves on an Enriques surface Y with Mukai vector v of positive rank with respect to a generic polarization H. In the case of a primitive Mukai vector on an unnodal Enriques surface, i.e. one containing no smooth rational curves, we prove irreducibility of MH,Y( v) as well. Using Bayer and Macri's construction of a natural nef divisor associated to a stability condition, we explore the relation between wall-crossing in the stability manifold and the minimal model program for Bridgeland moduli spaces. We give three applications of our machinery to obtain new information about the classical moduli spaces of Gieseker-stable sheaves: 1) We obtain a region in the ample cone of the moduli space of Gieseker-stable sheaves over Enriques surfaces. 2) We determine the nef cone of the Hilbert scheme of n points on an unnodal Enriques surface in terms of its half-pencils and the Cossec-Dolgachev &phis;-function. 3) We recover some classical results on linear systems on unnodal Enriques surfaces and obtain some new ones about n-very ample line bundles.
590
$a
School code: 0190.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
690
$a
0405
690
$a
0642
710
2
$a
Rutgers The State University of New Jersey - New Brunswick.
$b
Graduate School - New Brunswick.
$3
1019196
773
0
$t
Dissertation Abstracts International
$g
78-04B(E).
790
$a
0190
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10291851
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9355005
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login