Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Development of Smartphone based Opti...
~
Jung, Youngkee.
Linked to FindBook
Google Book
Amazon
博客來
Development of Smartphone based Optical Device.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Development of Smartphone based Optical Device./
Author:
Jung, Youngkee.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
Description:
102 p.
Notes:
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Contained By:
Dissertation Abstracts International79-03B(E).
Subject:
Mechanical engineering. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10608212
ISBN:
9780355258271
Development of Smartphone based Optical Device.
Jung, Youngkee.
Development of Smartphone based Optical Device.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 102 p.
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Thesis (Ph.D.)--Purdue University, 2017.
Due to the economy of scale, smartphones are becoming more affordable while their computing powers are increasing dramatically every year. Here we propose a ubiquitous and portable instrument for analyte quantitation by utilizing the characteristics of typical smartphone imaging system and specific design of transducers for different applications. Three testbeds included in this work are: quantitative colorimetric analysis, ultra-low radiant flux detection, and portable spectrometer. As a proof-of-principle for each device, 3-D printed cradle and theoretical simulation with MATLAB have been implemented. First example utilizes the native CMOS camera with their respective RGB channel data and perform an analyte quantitation for typical lateral flow devices (LFD). Histogram analysis method has been employed to detect the analyte concentration and calibration results show good correlation between perceived color change and analyte concentration. The second example shows the possibility of using a conventional CMOS camera for pico Watt level photon flux detection. Since most of consumer grade CMOS cameras cannot detect this level of light intensity and their dark current are relatively higher, a new algorithm called NREA (Noise Reduction by Ensemble Averaging) algorithm was developed to effectively reduce the noise level and increase the SNR (signal to noise ratio). This technique is effective for bioanalytical assays that has lower flux intensity such as fluorescence and luminescence. As a proof-of-principle, we tested the device with Pseudomonas fluorescens M3A and achieved a limit of detection of high 10? CFU/ml. In addition to basic schematic of detection model, another experiment with a silicon photomultiplier (SiPM) has been studied for more sensitive light detectability. Based on both the laser experiment and tw bioluminescent experiments, named Pseudomonas fluorescens M3A and NanoLuc, we found that the miniSM based device has a superior ability than the smartphone to detect the low light intensity. Finally, smartphone based spectrometers have been developed and experiments have been performed to demonstrate its availability. Smartphone spectrometers were designed with two kinds of spectrometer functions, absorbance and reflection spectrometer. Based on the diffraction theory, the experimental results were compared with simulation results and demonstrated the feasibility as a spectrometer. Peak locations were calibrated with diode lasers in three wavelengths (405 nm, 532 nm and 635 nm) and specific software application was developed to capture a spectrum. A Biuret test was done to test its feasibility as an absorbance spectrometer. To show the possibility as a reflection spectrometer, the real meat test was done using a standard experimental process of meat freshness analysis.
ISBN: 9780355258271Subjects--Topical Terms:
649730
Mechanical engineering.
Development of Smartphone based Optical Device.
LDR
:03750nmm a2200301 4500
001
2154367
005
20180330125241.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355258271
035
$a
(MiAaPQ)AAI10608212
035
$a
(MiAaPQ)purdue:21795
035
$a
AAI10608212
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jung, Youngkee.
$3
3342094
245
1 0
$a
Development of Smartphone based Optical Device.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
102 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
500
$a
Advisers: Euiwon Bae; Galen King.
502
$a
Thesis (Ph.D.)--Purdue University, 2017.
520
$a
Due to the economy of scale, smartphones are becoming more affordable while their computing powers are increasing dramatically every year. Here we propose a ubiquitous and portable instrument for analyte quantitation by utilizing the characteristics of typical smartphone imaging system and specific design of transducers for different applications. Three testbeds included in this work are: quantitative colorimetric analysis, ultra-low radiant flux detection, and portable spectrometer. As a proof-of-principle for each device, 3-D printed cradle and theoretical simulation with MATLAB have been implemented. First example utilizes the native CMOS camera with their respective RGB channel data and perform an analyte quantitation for typical lateral flow devices (LFD). Histogram analysis method has been employed to detect the analyte concentration and calibration results show good correlation between perceived color change and analyte concentration. The second example shows the possibility of using a conventional CMOS camera for pico Watt level photon flux detection. Since most of consumer grade CMOS cameras cannot detect this level of light intensity and their dark current are relatively higher, a new algorithm called NREA (Noise Reduction by Ensemble Averaging) algorithm was developed to effectively reduce the noise level and increase the SNR (signal to noise ratio). This technique is effective for bioanalytical assays that has lower flux intensity such as fluorescence and luminescence. As a proof-of-principle, we tested the device with Pseudomonas fluorescens M3A and achieved a limit of detection of high 10? CFU/ml. In addition to basic schematic of detection model, another experiment with a silicon photomultiplier (SiPM) has been studied for more sensitive light detectability. Based on both the laser experiment and tw bioluminescent experiments, named Pseudomonas fluorescens M3A and NanoLuc, we found that the miniSM based device has a superior ability than the smartphone to detect the low light intensity. Finally, smartphone based spectrometers have been developed and experiments have been performed to demonstrate its availability. Smartphone spectrometers were designed with two kinds of spectrometer functions, absorbance and reflection spectrometer. Based on the diffraction theory, the experimental results were compared with simulation results and demonstrated the feasibility as a spectrometer. Peak locations were calibrated with diode lasers in three wavelengths (405 nm, 532 nm and 635 nm) and specific software application was developed to capture a spectrum. A Biuret test was done to test its feasibility as an absorbance spectrometer. To show the possibility as a reflection spectrometer, the real meat test was done using a standard experimental process of meat freshness analysis.
590
$a
School code: 0183.
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Optics.
$3
517925
690
$a
0548
690
$a
0752
710
2
$a
Purdue University.
$b
Mechanical Engineering.
$3
1019124
773
0
$t
Dissertation Abstracts International
$g
79-03B(E).
790
$a
0183
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10608212
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9353914
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login