Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Modeling count data
~
Hilbe, Joseph M., (1944-)
Linked to FindBook
Google Book
Amazon
博客來
Modeling count data
Record Type:
Electronic resources : Monograph/item
Title/Author:
Modeling count data/ Joseph M. Hilbe.
Author:
Hilbe, Joseph M.,
Published:
Cambridge :Cambridge University Press, : 2014.,
Description:
xv, 283 p. :ill., digital ;24 cm.
[NT 15003449]:
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
Subject:
Multivariate analysis. -
Online resource:
https://doi.org/10.1017/CBO9781139236065
ISBN:
9781139236065
Modeling count data
Hilbe, Joseph M.,1944-
Modeling count data
[electronic resource] /Joseph M. Hilbe. - Cambridge :Cambridge University Press,2014. - xv, 283 p. :ill., digital ;24 cm.
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
ISBN: 9781139236065Subjects--Topical Terms:
517467
Multivariate analysis.
LC Class. No.: QA278 / .H56 2014
Dewey Class. No.: 519.535
Modeling count data
LDR
:01977nmm a2200265 a 4500
001
2137465
003
UkCbUP
005
20181005153155.0
006
m d
007
cr nn 008maaau
008
181117s2014 enk s 0 eng d
020
$a
9781139236065
$q
(electronic bk.)
020
$a
9781107028333
$q
(hardback)
020
$a
9781107611252
$q
(paperback)
035
$a
CR9781139236065
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA278
$b
.H56 2014
082
0 4
$a
519.535
$2
23
090
$a
QA278
$b
.H641 2014
100
1
$a
Hilbe, Joseph M.,
$d
1944-
$e
author.
$3
2069970
245
1 0
$a
Modeling count data
$h
[electronic resource] /
$c
Joseph M. Hilbe.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
xv, 283 p. :
$b
ill., digital ;
$c
24 cm.
505
8
$a
Machine generated contents note: Preface; 1. Varieties of count data; 2. Poisson regression; 3. Testing overdispersion; 4. Assessment of fit; 5. Negative binomial regression; 6. Poisson inverse Gaussian regression; 7. Problems with zeros; 8. Modeling under-dispersed count data - generalized Poisson; 9. Complex data: more advanced models; Appendix A: SAS code; References; Index.
520
$a
This entry-level text offers clear and concise guidelines on how to select, construct, interpret, and evaluate count data. Written for researchers with little or no background in advanced statistics, the book presents treatments of all major models using numerous tables, insets, and detailed modeling suggestions. It begins by demonstrating the fundamentals of modeling count data, including a thorough presentation of the Poisson model. It then works up to an analysis of the problem of overdispersion and of the negative binomial model, and finally to the many variations that can be made to the base count models. Examples in Stata, R, and SAS code enable readers to adapt models for their own purposes, making the text an ideal resource for researchers working in health, ecology, econometrics, transportation, and other fields.
650
0
$a
Multivariate analysis.
$3
517467
650
0
$a
Statistics.
$3
517247
650
0
$a
Linear models (Statistics)
$3
533190
856
4 0
$u
https://doi.org/10.1017/CBO9781139236065
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9344159
電子資源
11.線上閱覽_V
電子書
EB QA278 .H56 2014
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login