Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Nonparametric kernel density estimat...
~
Gramacki, Artur.
Linked to FindBook
Google Book
Amazon
博客來
Nonparametric kernel density estimation and its computational aspects
Record Type:
Electronic resources : Monograph/item
Title/Author:
Nonparametric kernel density estimation and its computational aspects/ by Artur Gramacki.
Author:
Gramacki, Artur.
Published:
Cham :Springer International Publishing : : 2018.,
Description:
xxix, 176 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Kernel functions. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-71688-6
ISBN:
9783319716886
Nonparametric kernel density estimation and its computational aspects
Gramacki, Artur.
Nonparametric kernel density estimation and its computational aspects
[electronic resource] /by Artur Gramacki. - Cham :Springer International Publishing :2018. - xxix, 176 p. :ill., digital ;24 cm. - Studies in big data,v.372197-6503 ;. - Studies in big data ;v.37..
This book describes computational problems related to kernel density estimation (KDE) - one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
ISBN: 9783319716886
Standard No.: 10.1007/978-3-319-71688-6doiSubjects--Topical Terms:
562986
Kernel functions.
LC Class. No.: QA353.K47
Dewey Class. No.: 515.9
Nonparametric kernel density estimation and its computational aspects
LDR
:01962nmm a2200313 a 4500
001
2132852
003
DE-He213
005
20180807133229.0
006
m d
007
cr nn 008maaau
008
181005s2018 gw s 0 eng d
020
$a
9783319716886
$q
(electronic bk.)
020
$a
9783319716879
$q
(paper)
024
7
$a
10.1007/978-3-319-71688-6
$2
doi
035
$a
978-3-319-71688-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA353.K47
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
515.9
$2
23
090
$a
QA353.K47
$b
G745 2018
100
1
$a
Gramacki, Artur.
$3
3299762
245
1 0
$a
Nonparametric kernel density estimation and its computational aspects
$h
[electronic resource] /
$c
by Artur Gramacki.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xxix, 176 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.37
520
$a
This book describes computational problems related to kernel density estimation (KDE) - one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
650
0
$a
Kernel functions.
$3
562986
650
0
$a
Digital filters (Mathematics)
$3
654098
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Big Data.
$3
3134868
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.37.
$3
3299763
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-71688-6
950
$a
Engineering (Springer-11647)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9341587
電子資源
11.線上閱覽_V
電子書
EB QA353.K47
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login