語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Extreme-Strike and Small-time Asympt...
~
Zhang, Xin.
FindBook
Google Book
Amazon
博客來
Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models./
作者:
Zhang, Xin.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
108 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-05(E), Section: B.
Contained By:
Dissertation Abstracts International78-05B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10179120
ISBN:
9781369292152
Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models.
Zhang, Xin.
Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 108 p.
Source: Dissertation Abstracts International, Volume: 78-05(E), Section: B.
Thesis (Ph.D.)--Purdue University, 2016.
Asymptotic behavior of implied volatility is of our interest in this dissertation. For extreme strike, we consider a stochastic volatility asset price model in which the volatility is the absolute value of a continuous Gaussian process with arbitrary prescribed mean and covariance. By exhibiting a Karhunen-Loeve expansion for the integrated variance, and using sharp estimates of the density of a general second-chaos variable, we derive asymptotics for the asset price density for large or small values of the variable, and study the wing behavior of the implied volatility in these models. Our main result provides explicit expressions for the first five terms in the expansion of the implied volatility, based on three basic spectral-type statistics of the Gaussian process: the top eigenvalue of its covariance operator, the multiplicity of this eigenvalue, and the L2 norm of the projection of the mean function on the top eigenspace. Strategies for using this expansion for calibration purposes are discussed.
ISBN: 9781369292152Subjects--Topical Terms:
515831
Mathematics.
Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models.
LDR
:02978nmm a2200301 4500
001
2128463
005
20180104132947.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781369292152
035
$a
(MiAaPQ)AAI10179120
035
$a
AAI10179120
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Xin.
$3
996620
245
1 0
$a
Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
108 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-05(E), Section: B.
500
$a
Adviser: Frederi Viens.
502
$a
Thesis (Ph.D.)--Purdue University, 2016.
520
$a
Asymptotic behavior of implied volatility is of our interest in this dissertation. For extreme strike, we consider a stochastic volatility asset price model in which the volatility is the absolute value of a continuous Gaussian process with arbitrary prescribed mean and covariance. By exhibiting a Karhunen-Loeve expansion for the integrated variance, and using sharp estimates of the density of a general second-chaos variable, we derive asymptotics for the asset price density for large or small values of the variable, and study the wing behavior of the implied volatility in these models. Our main result provides explicit expressions for the first five terms in the expansion of the implied volatility, based on three basic spectral-type statistics of the Gaussian process: the top eigenvalue of its covariance operator, the multiplicity of this eigenvalue, and the L2 norm of the projection of the mean function on the top eigenspace. Strategies for using this expansion for calibration purposes are discussed.
520
$a
For small time, we consider the class of self-similar Gaussian stochastic volatility models, and compute the small-time (near-maturity) asymptotics for the corresponding asset price density, the call and put pricing functions, and the implied volatilities. Unlike the well-known model-free behavior for extreme-strike asymptotics, small-time behaviors of the above depend heavily on the model, and require a control of the asset price density which is uniform with respect to the asset price variable, in order to translate into results for call prices and implied volatilities. Away from the money, we express the asymptotics explicitly using the volatility process' self-similarity parameter H, its first Karhunen-Loeve eigenvalue at time 1, and the latter's multiplicity. Several model-free estimators for H result is discussed. At the money, a separate study is required: the asymptotics for small time depend instead on the integrated variance's moments of orders 1/2 and 3/2, and the estimator for H sees an affine adjustment.
590
$a
School code: 0183.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Statistics.
$3
517247
690
$a
0405
690
$a
0463
710
2
$a
Purdue University.
$b
Mathematics.
$3
1019066
773
0
$t
Dissertation Abstracts International
$g
78-05B(E).
790
$a
0183
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10179120
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9339066
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入