語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Effects of land use and invasive fis...
~
Sundberg, Michael David.
FindBook
Google Book
Amazon
博客來
Effects of land use and invasive fishes on prairie pothole wetland condition.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Effects of land use and invasive fishes on prairie pothole wetland condition./
作者:
Sundberg, Michael David.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
128 p.
附註:
Source: Masters Abstracts International, Volume: 55-05.
Contained By:
Masters Abstracts International55-05(E).
標題:
Aquatic sciences. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10126452
ISBN:
9781339844923
Effects of land use and invasive fishes on prairie pothole wetland condition.
Sundberg, Michael David.
Effects of land use and invasive fishes on prairie pothole wetland condition.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 128 p.
Source: Masters Abstracts International, Volume: 55-05.
Thesis (M.S.)--Iowa State University, 2016.
Prairie pothole wetlands provide many valuable ecosystem services. However, land use changes in the prairie pothole region (PPR) have increased contaminant loadings and facilitated invasions by fishes, leading to declines in biological diversity and wetland condition. Primary objectives of my thesis research were to 1) quantify direct and indirect relationships among nine environmental attributes, including land use, wetland water volume, herbicides, chloride, invasive fishes, turbidity, plant and invertebrate assemblages, and tiger salamander Ambystoma tigrinum abundance, 2) use these relationships to identify a set of wetland condition metrics, and 3) evaluate how wetland ecosystems responded when invasive fishes were eliminated following a drought. In chapter one of my thesis, multiple regression analysis was used to quantify relationships among attribute variables in 45 permanently/semipermanently flooded prairie pothole wetlands. Results from multiple regression indicated that wetland water volume (measured as surface area) and water column chloride concentration increased as crop land and developed land percent cover increased in the watershed. Contrary to predictions, abundance of fishes, primarily fathead minnow Pimephales promelas and black bullhead Ameiurus melas, were unrelated to wetland surface area. However, results suggested that bioturbation or nutrient excretion by fishes caused increases in turbidity, which in turn caused declines in plant cover within wetlands. As predicted, tiger salamander Ambystoma tigrinum abundance and macroinvertebrate taxon richness also declined within wetland basins as fish abundance increased. Additionally, plant cover declined across a gradient of increasing herbicide concentration in the water column. In chapter two of my thesis, a repeated measures ANOVA was used to compare several wetland condition indicator variables (tiger salamander biomass and numerical abundance, turbidity, plant cover and taxon richness) from a subset of 29 prairie pothole wetlands in 2010-2011 (pre-drought period) and 2014-2015 (post-drought period). Pre- and post-drought values were compared among 1) all wetlands where fishes were eliminated by the drought 2) wetlands where large-bodied benthic (black bullhead) fishes were eliminated by the drought, 3) wetlands where small-bodied/open water (native cyprinids, brook stickleback Culaea inconstans) fishes were eliminated by the drought, 4) wetlands where fish abundance was unchanged, and 5) wetlands where fishes were not detected in either the pre- or post-drought study period. Results from pre- and post-drought comparisons suggested water clarity and plant cover increased where large-bodied benthic fish abundance was reduced, likely due to reduced bioturbation. Plant taxon richness and numerical abundance of tiger salamanders increased where total fish abundance was reduced, possibly as a result of reduced predation or competition. Collectively, these findings suggest that while wetlands are negatively affected by fishes through declines in water clarity, plant and salamander abundance, and invertebrate diversity, they have the capacity to quickly recover when fish abundance declines. Results also suggest that chloride concentration is a good indicator of human land use intensity in the watershed, and that elevated herbicide concentrations cause reductions in plant abundance. Efforts to reduce herbicide use and fish abundance would likely improve wetland condition and increase biological diversity.
ISBN: 9781339844923Subjects--Topical Terms:
3174300
Aquatic sciences.
Effects of land use and invasive fishes on prairie pothole wetland condition.
LDR
:04455nmm a2200289 4500
001
2120751
005
20170724102525.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339844923
035
$a
(MiAaPQ)AAI10126452
035
$a
AAI10126452
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Sundberg, Michael David.
$3
3282704
245
1 0
$a
Effects of land use and invasive fishes on prairie pothole wetland condition.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
128 p.
500
$a
Source: Masters Abstracts International, Volume: 55-05.
500
$a
Advisers: Timothy W. Stewart; Michael J. Weber.
502
$a
Thesis (M.S.)--Iowa State University, 2016.
520
$a
Prairie pothole wetlands provide many valuable ecosystem services. However, land use changes in the prairie pothole region (PPR) have increased contaminant loadings and facilitated invasions by fishes, leading to declines in biological diversity and wetland condition. Primary objectives of my thesis research were to 1) quantify direct and indirect relationships among nine environmental attributes, including land use, wetland water volume, herbicides, chloride, invasive fishes, turbidity, plant and invertebrate assemblages, and tiger salamander Ambystoma tigrinum abundance, 2) use these relationships to identify a set of wetland condition metrics, and 3) evaluate how wetland ecosystems responded when invasive fishes were eliminated following a drought. In chapter one of my thesis, multiple regression analysis was used to quantify relationships among attribute variables in 45 permanently/semipermanently flooded prairie pothole wetlands. Results from multiple regression indicated that wetland water volume (measured as surface area) and water column chloride concentration increased as crop land and developed land percent cover increased in the watershed. Contrary to predictions, abundance of fishes, primarily fathead minnow Pimephales promelas and black bullhead Ameiurus melas, were unrelated to wetland surface area. However, results suggested that bioturbation or nutrient excretion by fishes caused increases in turbidity, which in turn caused declines in plant cover within wetlands. As predicted, tiger salamander Ambystoma tigrinum abundance and macroinvertebrate taxon richness also declined within wetland basins as fish abundance increased. Additionally, plant cover declined across a gradient of increasing herbicide concentration in the water column. In chapter two of my thesis, a repeated measures ANOVA was used to compare several wetland condition indicator variables (tiger salamander biomass and numerical abundance, turbidity, plant cover and taxon richness) from a subset of 29 prairie pothole wetlands in 2010-2011 (pre-drought period) and 2014-2015 (post-drought period). Pre- and post-drought values were compared among 1) all wetlands where fishes were eliminated by the drought 2) wetlands where large-bodied benthic (black bullhead) fishes were eliminated by the drought, 3) wetlands where small-bodied/open water (native cyprinids, brook stickleback Culaea inconstans) fishes were eliminated by the drought, 4) wetlands where fish abundance was unchanged, and 5) wetlands where fishes were not detected in either the pre- or post-drought study period. Results from pre- and post-drought comparisons suggested water clarity and plant cover increased where large-bodied benthic fish abundance was reduced, likely due to reduced bioturbation. Plant taxon richness and numerical abundance of tiger salamanders increased where total fish abundance was reduced, possibly as a result of reduced predation or competition. Collectively, these findings suggest that while wetlands are negatively affected by fishes through declines in water clarity, plant and salamander abundance, and invertebrate diversity, they have the capacity to quickly recover when fish abundance declines. Results also suggest that chloride concentration is a good indicator of human land use intensity in the watershed, and that elevated herbicide concentrations cause reductions in plant abundance. Efforts to reduce herbicide use and fish abundance would likely improve wetland condition and increase biological diversity.
590
$a
School code: 0097.
650
4
$a
Aquatic sciences.
$3
3174300
650
4
$a
Ecology.
$3
516476
690
$a
0792
690
$a
0329
710
2
$a
Iowa State University.
$b
Natural Resource Ecology and Management.
$3
1034252
773
0
$t
Masters Abstracts International
$g
55-05(E).
790
$a
0097
791
$a
M.S.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10126452
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9331369
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入