Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Fixed-point image orthorectification...
~
French, Joseph Clinton.
Linked to FindBook
Google Book
Amazon
博客來
Fixed-point image orthorectification algorithms for reduced computational cost.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Fixed-point image orthorectification algorithms for reduced computational cost./
Author:
French, Joseph Clinton.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
Description:
107 p.
Notes:
Source: Dissertation Abstracts International, Volume: 78-02(E), Section: B.
Contained By:
Dissertation Abstracts International78-02B(E).
Subject:
Electrical engineering. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10144989
ISBN:
9781369005516
Fixed-point image orthorectification algorithms for reduced computational cost.
French, Joseph Clinton.
Fixed-point image orthorectification algorithms for reduced computational cost.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 107 p.
Source: Dissertation Abstracts International, Volume: 78-02(E), Section: B.
Thesis (Dr.Ph.)--University of Dayton, 2016.
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing.
ISBN: 9781369005516Subjects--Topical Terms:
649834
Electrical engineering.
Fixed-point image orthorectification algorithms for reduced computational cost.
LDR
:03467nmm a2200313 4500
001
2118177
005
20170605151650.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781369005516
035
$a
(MiAaPQ)AAI10144989
035
$a
AAI10144989
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
French, Joseph Clinton.
$3
3279992
245
1 0
$a
Fixed-point image orthorectification algorithms for reduced computational cost.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
107 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-02(E), Section: B.
500
$a
Adviser: Eric Balster.
502
$a
Thesis (Dr.Ph.)--University of Dayton, 2016.
520
$a
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing.
520
$a
A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
590
$a
School code: 0327.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Remote sensing.
$3
535394
650
4
$a
Mathematics.
$3
515831
690
$a
0544
690
$a
0799
690
$a
0405
710
2
$a
University of Dayton.
$b
Engineering.
$3
3190258
773
0
$t
Dissertation Abstracts International
$g
78-02B(E).
790
$a
0327
791
$a
Dr.Ph.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10144989
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9328795
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login