Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Ascorbic acid in plant growth, devel...
~
Hossain, Mohammad Anwar.
Linked to FindBook
Google Book
Amazon
博客來
Ascorbic acid in plant growth, development and stress tolerance
Record Type:
Electronic resources : Monograph/item
Title/Author:
Ascorbic acid in plant growth, development and stress tolerance/ edited by Mohammad Anwar Hossain ... [et al.].
other author:
Hossain, Mohammad Anwar.
Published:
Cham :Springer International Publishing : : 2017.,
Description:
xviii, 514 p. :ill., digital ;24 cm.
[NT 15003449]:
1 Chemistry, biosynthesis and oxidation of ascorbic acid in plants -- 2 The roles of ascorbate in the control of plant growth and development -- 3 Ascorbate transporter in plants -- 4 Ascorbate as a key player in plant abiotic stress response and tolerance -- 5 Ascorbate peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses -- 6 Molecular structure of DHAR and MDHAR and their roles in modulating abiotic stress tolerance in plants -- 7 Triad of low molecular weight antioxidants (GSH-AsA-α-tocopherol) in plant abiotic stress response and tolerance -- 8 Regulation of ascorbate biosynthesis in plants -- 9 Ascorbate-glutathione cycle and abiotic stress tolerance in plants -- 10 Ascorbate-glutathione cycle and biotic stress tolerance in plants -- 11 Exogenous ascorbic acid mediated abiotic stress tolerance in plants -- 12 Ascorbic acid and biotic stress tolerance in plants -- 13 Ascorbate oxidase in plant growth, development and stress tolerance -- 14 Relationship between AsA biosynthesis and stress defense gene expression in plants -- 15 AsA/DHA redox pair and stress responsive gene expression -- 16 Ascorbic acid and insect resistance in plants -- 17 Transgenic plants over-expressing AsA biosynthetic genes and abiotic stress tolerance -- 18 MDHAR and DHAR transgenic and AsA content and abiotic stress tolerance -- 19 Biofortification of crops with altered AsA content -- 20 Genetic control of fruit vitamin c contents -- 21 Importance of vitamin-C in human health and disease.
Contained By:
Springer eBooks
Subject:
Plants - Effect of vitamin C on. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-74057-7
ISBN:
9783319740577
Ascorbic acid in plant growth, development and stress tolerance
Ascorbic acid in plant growth, development and stress tolerance
[electronic resource] /edited by Mohammad Anwar Hossain ... [et al.]. - Cham :Springer International Publishing :2017. - xviii, 514 p. :ill., digital ;24 cm.
1 Chemistry, biosynthesis and oxidation of ascorbic acid in plants -- 2 The roles of ascorbate in the control of plant growth and development -- 3 Ascorbate transporter in plants -- 4 Ascorbate as a key player in plant abiotic stress response and tolerance -- 5 Ascorbate peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses -- 6 Molecular structure of DHAR and MDHAR and their roles in modulating abiotic stress tolerance in plants -- 7 Triad of low molecular weight antioxidants (GSH-AsA-α-tocopherol) in plant abiotic stress response and tolerance -- 8 Regulation of ascorbate biosynthesis in plants -- 9 Ascorbate-glutathione cycle and abiotic stress tolerance in plants -- 10 Ascorbate-glutathione cycle and biotic stress tolerance in plants -- 11 Exogenous ascorbic acid mediated abiotic stress tolerance in plants -- 12 Ascorbic acid and biotic stress tolerance in plants -- 13 Ascorbate oxidase in plant growth, development and stress tolerance -- 14 Relationship between AsA biosynthesis and stress defense gene expression in plants -- 15 AsA/DHA redox pair and stress responsive gene expression -- 16 Ascorbic acid and insect resistance in plants -- 17 Transgenic plants over-expressing AsA biosynthetic genes and abiotic stress tolerance -- 18 MDHAR and DHAR transgenic and AsA content and abiotic stress tolerance -- 19 Biofortification of crops with altered AsA content -- 20 Genetic control of fruit vitamin c contents -- 21 Importance of vitamin-C in human health and disease.
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
ISBN: 9783319740577
Standard No.: 10.1007/978-3-319-74057-7doiSubjects--Topical Terms:
3275015
Plants
--Effect of vitamin C on.
LC Class. No.: QK731
Dewey Class. No.: 571.82
Ascorbic acid in plant growth, development and stress tolerance
LDR
:04532nmm a2200313 a 4500
001
2113932
003
DE-He213
005
20180321192547.0
006
m d
007
cr nn 008maaau
008
180816s2017 gw s 0 eng d
020
$a
9783319740577
$q
(electronic bk.)
020
$a
9783319740560
$q
(paper)
024
7
$a
10.1007/978-3-319-74057-7
$2
doi
035
$a
978-3-319-74057-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QK731
072
7
$a
TVB
$2
bicssc
072
7
$a
TEC003000
$2
bisacsh
082
0 4
$a
571.82
$2
23
090
$a
QK731
$b
.A815 2017
245
0 0
$a
Ascorbic acid in plant growth, development and stress tolerance
$h
[electronic resource] /
$c
edited by Mohammad Anwar Hossain ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xviii, 514 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 Chemistry, biosynthesis and oxidation of ascorbic acid in plants -- 2 The roles of ascorbate in the control of plant growth and development -- 3 Ascorbate transporter in plants -- 4 Ascorbate as a key player in plant abiotic stress response and tolerance -- 5 Ascorbate peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses -- 6 Molecular structure of DHAR and MDHAR and their roles in modulating abiotic stress tolerance in plants -- 7 Triad of low molecular weight antioxidants (GSH-AsA-α-tocopherol) in plant abiotic stress response and tolerance -- 8 Regulation of ascorbate biosynthesis in plants -- 9 Ascorbate-glutathione cycle and abiotic stress tolerance in plants -- 10 Ascorbate-glutathione cycle and biotic stress tolerance in plants -- 11 Exogenous ascorbic acid mediated abiotic stress tolerance in plants -- 12 Ascorbic acid and biotic stress tolerance in plants -- 13 Ascorbate oxidase in plant growth, development and stress tolerance -- 14 Relationship between AsA biosynthesis and stress defense gene expression in plants -- 15 AsA/DHA redox pair and stress responsive gene expression -- 16 Ascorbic acid and insect resistance in plants -- 17 Transgenic plants over-expressing AsA biosynthetic genes and abiotic stress tolerance -- 18 MDHAR and DHAR transgenic and AsA content and abiotic stress tolerance -- 19 Biofortification of crops with altered AsA content -- 20 Genetic control of fruit vitamin c contents -- 21 Importance of vitamin-C in human health and disease.
520
$a
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
650
0
$a
Plants
$x
Effect of vitamin C on.
$3
3275015
650
0
$a
Growth (Plants)
$3
518571
650
0
$a
Plants
$x
Development.
$3
600613
650
0
$a
Vitamin C.
$3
696510
650
1 4
$a
Life Sciences.
$3
890838
650
2 4
$a
Agriculture.
$3
518588
650
2 4
$a
Plant Physiology.
$3
864040
650
2 4
$a
Plant Breeding/Biotechnology.
$3
899391
650
2 4
$a
Nutrition.
$3
517777
700
1
$a
Hossain, Mohammad Anwar.
$3
2194666
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-74057-7
950
$a
Biomedical and Life Sciences (Springer-11642)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9325332
電子資源
11.線上閱覽_V
電子書
EB QK731
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login