語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep learning and convolutional neur...
~
Lu, Le.
FindBook
Google Book
Amazon
博客來
Deep learning and convolutional neural networks for medical image computing = precision medicine, high performance and large-scale datasets /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep learning and convolutional neural networks for medical image computing/ edited by Le Lu ... [et al.].
其他題名:
precision medicine, high performance and large-scale datasets /
其他作者:
Lu, Le.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xiii, 326 p. :ill., digital ;24 cm.
內容註:
Part I: Review -- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective -- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis -- Part II: Detection and Localization -- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation -- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning -- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set -- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers -- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning -- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging -- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel -- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition -- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging -- Part III: Segmentation -- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference -- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms -- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context -- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders -- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling -- Part IV: Big Dataset and Text-Image Deep Mining -- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database.
Contained By:
Springer eBooks
標題:
Diagnostic imaging - Data processing. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-42999-1
ISBN:
9783319429991
Deep learning and convolutional neural networks for medical image computing = precision medicine, high performance and large-scale datasets /
Deep learning and convolutional neural networks for medical image computing
precision medicine, high performance and large-scale datasets /[electronic resource] :edited by Le Lu ... [et al.]. - Cham :Springer International Publishing :2017. - xiii, 326 p. :ill., digital ;24 cm. - Advances in computer vision and pattern recognition,2191-6586. - Advances in computer vision and pattern recognition..
Part I: Review -- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective -- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis -- Part II: Detection and Localization -- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation -- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning -- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set -- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers -- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning -- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging -- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel -- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition -- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging -- Part III: Segmentation -- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference -- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms -- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context -- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders -- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling -- Part IV: Big Dataset and Text-Image Deep Mining -- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database.
This timely text/reference presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Topics and features: Highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing Discusses the insightful research experience and views of Dr. Ronald M. Summers in medical imaging-based computer-aided diagnosis and its interaction with deep learning Presents a comprehensive review of the latest research and literature on deep learning for medical image analysis Describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging Examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging Introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database for automated image interpretation This pioneering volume will prove invaluable to researchers and graduate students wishing to employ deep neural network models and representations for medical image analysis and medical imaging applications. Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA. Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA. Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia. Dr. Lin Yang is an Associate Professor in the Department of Biomedical Engineering at the University of Florida, Gainesville, FL, USA.
ISBN: 9783319429991
Standard No.: 10.1007/978-3-319-42999-1doiSubjects--Topical Terms:
817500
Diagnostic imaging
--Data processing.
LC Class. No.: QA76.87 / .D44 2017
Dewey Class. No.: 006.32
Deep learning and convolutional neural networks for medical image computing = precision medicine, high performance and large-scale datasets /
LDR
:05159nmm a2200349 a 4500
001
2105479
003
DE-He213
005
20170713132202.0
006
m d
007
cr nn 008maaau
008
180417s2017 gw s 0 eng d
020
$a
9783319429991
$q
(electronic bk.)
020
$a
9783319429984
$q
(paper)
024
7
$a
10.1007/978-3-319-42999-1
$2
doi
035
$a
978-3-319-42999-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.D44 2017
072
7
$a
UYT
$2
bicssc
072
7
$a
UYQV
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
COM016000
$2
bisacsh
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.D311 2017
245
0 0
$a
Deep learning and convolutional neural networks for medical image computing
$h
[electronic resource] :
$b
precision medicine, high performance and large-scale datasets /
$c
edited by Le Lu ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xiii, 326 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in computer vision and pattern recognition,
$x
2191-6586
505
0
$a
Part I: Review -- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective -- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis -- Part II: Detection and Localization -- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation -- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning -- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set -- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers -- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning -- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging -- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel -- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition -- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging -- Part III: Segmentation -- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference -- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms -- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context -- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders -- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling -- Part IV: Big Dataset and Text-Image Deep Mining -- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database.
520
$a
This timely text/reference presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Topics and features: Highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing Discusses the insightful research experience and views of Dr. Ronald M. Summers in medical imaging-based computer-aided diagnosis and its interaction with deep learning Presents a comprehensive review of the latest research and literature on deep learning for medical image analysis Describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging Examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging Introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database for automated image interpretation This pioneering volume will prove invaluable to researchers and graduate students wishing to employ deep neural network models and representations for medical image analysis and medical imaging applications. Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA. Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA. Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia. Dr. Lin Yang is an Associate Professor in the Department of Biomedical Engineering at the University of Florida, Gainesville, FL, USA.
650
0
$a
Diagnostic imaging
$x
Data processing.
$3
817500
650
0
$a
Neural networks (Computer science)
$3
532070
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Image Processing and Computer Vision.
$3
891070
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
1619875
650
2 4
$a
Imaging / Radiology.
$3
891022
700
1
$a
Lu, Le.
$3
1922087
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Advances in computer vision and pattern recognition.
$3
1567575
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-42999-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9322011
電子資源
11.線上閱覽_V
電子書
EB QA76.87 .D44 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入