Transparent data mining for big and ...
Cerquitelli, Tania.

Linked to FindBook      Google Book      Amazon      博客來     
  • Transparent data mining for big and small data
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Transparent data mining for big and small data/ edited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale.
    other author: Cerquitelli, Tania.
    Published: Cham :Springer International Publishing : : 2017.,
    Description: xv, 215 p. :ill., digital ;24 cm.
    [NT 15003449]: Part I: Transparent Mining -- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountability?
    Contained By: Springer eBooks
    Subject: Data mining. -
    Online resource: http://dx.doi.org/10.1007/978-3-319-54024-5
    ISBN: 9783319540245
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login