Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Real-time recursive hyperspectral sa...
~
Chang, Chein-I.
Linked to FindBook
Google Book
Amazon
博客來
Real-time recursive hyperspectral sample and band processing = algorithm architecture and implementation /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Real-time recursive hyperspectral sample and band processing/ by Chein-I Chang.
Reminder of title:
algorithm architecture and implementation /
Author:
Chang, Chein-I.
Published:
Cham :Springer International Publishing : : 2017.,
Description:
xxiii, 690 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Overview and Introduction -- PART I: Fundamentals -- Simplex Volume Calculation -- Discrete Time Kalman Filtering in Hyperspectral Data Prcoessing -- Target-Specified Virtual Dimesnionality -- PART II: Sample Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Real Time Recursive Hyperspectral Sample Processing of Constrained Energy Minimization -- Real Time Recursive Hyperspectral Sample Processing of Anomaly Detection -- PART III: Signature Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Recursive Hyperspectral Sample Processing of Automatic Target Generation Process -- Recursive Hyperspectral Sample Processing of Orthogonal Subspace Projection -- Recursive Hyperspectral Sample Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Sample Processing of Maximimal Likelihood Estimation -- Recursive Hyperspectral Sample Processing of Orthogonal Projection-Based Simplex Growing Algorithm -- Recursive Hyperspectral Sample Processing of Geometric Simplex Growing Simplex Algorithm -- PART IV: Sample Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Constrained Energy Minimization -- Recursive Hyperspectral Band Processing of Anomly Detection -- Signature Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Automatic Target Generation Process -- Recursive Hyperspectral Band Processing of Orthogonal Subspce Projection -- Recursive Hyperspectral Band Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Band Processing of Growing Simplex Volume Analysis -- Recursive Hyperspectral Band Processing of Iterative Pixel Puirty Index -- Recursive Hyperspectral Band Processing of Fast Iterative Pixel Purity Index -- Conclusions -- Glossary -- Appendix A -- References -- Index.
Contained By:
Springer eBooks
Subject:
Signal processing - Digital techniques -
Online resource:
http://dx.doi.org/10.1007/978-3-319-45171-8
ISBN:
9783319451718
Real-time recursive hyperspectral sample and band processing = algorithm architecture and implementation /
Chang, Chein-I.
Real-time recursive hyperspectral sample and band processing
algorithm architecture and implementation /[electronic resource] :by Chein-I Chang. - Cham :Springer International Publishing :2017. - xxiii, 690 p. :ill. (some col.), digital ;24 cm.
Overview and Introduction -- PART I: Fundamentals -- Simplex Volume Calculation -- Discrete Time Kalman Filtering in Hyperspectral Data Prcoessing -- Target-Specified Virtual Dimesnionality -- PART II: Sample Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Real Time Recursive Hyperspectral Sample Processing of Constrained Energy Minimization -- Real Time Recursive Hyperspectral Sample Processing of Anomaly Detection -- PART III: Signature Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Recursive Hyperspectral Sample Processing of Automatic Target Generation Process -- Recursive Hyperspectral Sample Processing of Orthogonal Subspace Projection -- Recursive Hyperspectral Sample Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Sample Processing of Maximimal Likelihood Estimation -- Recursive Hyperspectral Sample Processing of Orthogonal Projection-Based Simplex Growing Algorithm -- Recursive Hyperspectral Sample Processing of Geometric Simplex Growing Simplex Algorithm -- PART IV: Sample Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Constrained Energy Minimization -- Recursive Hyperspectral Band Processing of Anomly Detection -- Signature Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Automatic Target Generation Process -- Recursive Hyperspectral Band Processing of Orthogonal Subspce Projection -- Recursive Hyperspectral Band Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Band Processing of Growing Simplex Volume Analysis -- Recursive Hyperspectral Band Processing of Iterative Pixel Puirty Index -- Recursive Hyperspectral Band Processing of Fast Iterative Pixel Purity Index -- Conclusions -- Glossary -- Appendix A -- References -- Index.
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author's books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.
ISBN: 9783319451718
Standard No.: 10.1007/978-3-319-45171-8doiSubjects--Topical Terms:
595704
Signal processing
--Digital techniques
LC Class. No.: TK5102.9
Dewey Class. No.: 621.3822
Real-time recursive hyperspectral sample and band processing = algorithm architecture and implementation /
LDR
:03920nmm a2200337 a 4500
001
2097537
003
DE-He213
005
20171103094259.0
006
m d
007
cr nn 008maaau
008
171229s2017 gw s 0 eng d
020
$a
9783319451718
$q
(electronic bk.)
020
$a
9783319451701
$q
(paper)
024
7
$a
10.1007/978-3-319-45171-8
$2
doi
035
$a
978-3-319-45171-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5102.9
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
621.3822
$2
23
090
$a
TK5102.9
$b
.C456 2017
100
1
$a
Chang, Chein-I.
$3
811672
245
1 0
$a
Real-time recursive hyperspectral sample and band processing
$h
[electronic resource] :
$b
algorithm architecture and implementation /
$c
by Chein-I Chang.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xxiii, 690 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Overview and Introduction -- PART I: Fundamentals -- Simplex Volume Calculation -- Discrete Time Kalman Filtering in Hyperspectral Data Prcoessing -- Target-Specified Virtual Dimesnionality -- PART II: Sample Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Real Time Recursive Hyperspectral Sample Processing of Constrained Energy Minimization -- Real Time Recursive Hyperspectral Sample Processing of Anomaly Detection -- PART III: Signature Spectral Statistics-Based Recursive Hyperspectral Sample Prcoessing -- Recursive Hyperspectral Sample Processing of Automatic Target Generation Process -- Recursive Hyperspectral Sample Processing of Orthogonal Subspace Projection -- Recursive Hyperspectral Sample Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Sample Processing of Maximimal Likelihood Estimation -- Recursive Hyperspectral Sample Processing of Orthogonal Projection-Based Simplex Growing Algorithm -- Recursive Hyperspectral Sample Processing of Geometric Simplex Growing Simplex Algorithm -- PART IV: Sample Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Constrained Energy Minimization -- Recursive Hyperspectral Band Processing of Anomly Detection -- Signature Spectral Statistics-Based Recursive Hyperspectral Band Prcoessing -- Recursive Hyperspectral Band Processing of Automatic Target Generation Process -- Recursive Hyperspectral Band Processing of Orthogonal Subspce Projection -- Recursive Hyperspectral Band Processing of Linear Spectral Mixture Analysis -- Recursive Hyperspectral Band Processing of Growing Simplex Volume Analysis -- Recursive Hyperspectral Band Processing of Iterative Pixel Puirty Index -- Recursive Hyperspectral Band Processing of Fast Iterative Pixel Purity Index -- Conclusions -- Glossary -- Appendix A -- References -- Index.
520
$a
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author's books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.
650
0
$a
Signal processing
$x
Digital techniques
$x
Data processing.
$3
595704
650
0
$a
Signal processing
$x
Digital techniques
$x
Mathematics.
$3
888420
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Image Processing and Computer Vision.
$3
891070
650
2 4
$a
Pattern Recognition.
$3
891045
650
2 4
$a
Biometrics.
$3
898232
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45171-8
950
$a
Engineering (Springer-11647)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9319586
電子資源
11.線上閱覽_V
電子書
EB TK5102.9
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login