Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Data Science Using Oracle Data Miner...
~
Das, Sibanjan.
Linked to FindBook
Google Book
Amazon
博客來
Data Science Using Oracle Data Miner and Oracle R Enterprise = transform your business systems into an analytical powerhouse /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Data Science Using Oracle Data Miner and Oracle R Enterprise/ by Sibanjan Das.
Reminder of title:
transform your business systems into an analytical powerhouse /
Author:
Das, Sibanjan.
Published:
Berkeley, CA :Apress : : 2016.,
Description:
xxii, 289 p. :ill., digital ;24 cm.
[NT 15003449]:
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
Contained By:
Springer eBooks
Subject:
Data mining. -
Online resource:
http://dx.doi.org/10.1007/978-1-4842-2614-8
ISBN:
9781484226148
Data Science Using Oracle Data Miner and Oracle R Enterprise = transform your business systems into an analytical powerhouse /
Das, Sibanjan.
Data Science Using Oracle Data Miner and Oracle R Enterprise
transform your business systems into an analytical powerhouse /[electronic resource] :by Sibanjan Das. - Berkeley, CA :Apress :2016. - xxii, 289 p. :ill., digital ;24 cm.
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
ISBN: 9781484226148
Standard No.: 10.1007/978-1-4842-2614-8doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Data Science Using Oracle Data Miner and Oracle R Enterprise = transform your business systems into an analytical powerhouse /
LDR
:02098nmm a2200289 a 4500
001
2082667
003
DE-He213
005
20161223031143.0
006
m d
007
cr nn 008maaau
008
170717s2016 cau s 0 eng d
020
$a
9781484226148
$q
(electronic bk.)
020
$a
9781484226131
$q
(paper)
024
7
$a
10.1007/978-1-4842-2614-8
$2
doi
035
$a
978-1-4842-2614-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
D229 2016
100
1
$a
Das, Sibanjan.
$3
3206277
245
1 0
$a
Data Science Using Oracle Data Miner and Oracle R Enterprise
$h
[electronic resource] :
$b
transform your business systems into an analytical powerhouse /
$c
by Sibanjan Das.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2016.
300
$a
xxii, 289 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment.
520
$a
Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.
650
0
$a
Data mining.
$3
562972
650
0
$a
Computer science.
$3
523869
650
0
$a
Programming languages (Electronic computers)
$3
606806
650
0
$a
Database management.
$3
527442
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Database Management.
$3
891010
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
891123
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-2614-8
950
$a
Professional and Applied Computing (Springer-12059)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9313213
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343 D229 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login