Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Heterotic Chen-Ruan cohomology.
~
Manion, Ryan.
Linked to FindBook
Google Book
Amazon
博客來
Heterotic Chen-Ruan cohomology.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Heterotic Chen-Ruan cohomology./
Author:
Manion, Ryan.
Description:
99 p.
Notes:
Source: Dissertation Abstracts International, Volume: 75-09(E), Section: B.
Contained By:
Dissertation Abstracts International75-09B(E).
Subject:
Mathematics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3622102
ISBN:
9781303936838
Heterotic Chen-Ruan cohomology.
Manion, Ryan.
Heterotic Chen-Ruan cohomology.
- 99 p.
Source: Dissertation Abstracts International, Volume: 75-09(E), Section: B.
Thesis (Ph.D.)--University of Pennsylvania, 2014.
We extend the construction of the Chen-Ruan cohomology in the setting of heterotic string theory. We show that it properly reduces to the Chen-Ruan cohomology in the case where the gauge bundle E is chosen to be the tangent bundle TX and examine its basic properties, followed by demonstrating nontrivial examples and computations. The second portion of this work examines the extension of the anomaly cancellation condition for gerbes through an extended example. Namely, we use Fourier-Mukai transforms and the methods of [Donagi-Pantev 04] to set up a construction of bundles over a gerbe which should be non-anomalous.
ISBN: 9781303936838Subjects--Topical Terms:
515831
Mathematics.
Heterotic Chen-Ruan cohomology.
LDR
:01471nmm a2200277 4500
001
2070209
005
20160531114001.5
008
170521s2014 ||||||||||||||||| ||eng d
020
$a
9781303936838
035
$a
(MiAaPQ)AAI3622102
035
$a
AAI3622102
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Manion, Ryan.
$3
3185248
245
1 0
$a
Heterotic Chen-Ruan cohomology.
300
$a
99 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-09(E), Section: B.
500
$a
Advisers: Tony G. Pantev; David Harbater.
502
$a
Thesis (Ph.D.)--University of Pennsylvania, 2014.
520
$a
We extend the construction of the Chen-Ruan cohomology in the setting of heterotic string theory. We show that it properly reduces to the Chen-Ruan cohomology in the case where the gauge bundle E is chosen to be the tangent bundle TX and examine its basic properties, followed by demonstrating nontrivial examples and computations. The second portion of this work examines the extension of the anomaly cancellation condition for gerbes through an extended example. Namely, we use Fourier-Mukai transforms and the methods of [Donagi-Pantev 04] to set up a construction of bundles over a gerbe which should be non-anomalous.
590
$a
School code: 0175.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical physics.
$3
2144760
690
$a
0405
690
$a
0753
710
2
$a
University of Pennsylvania.
$b
Mathematics.
$3
2101086
773
0
$t
Dissertation Abstracts International
$g
75-09B(E).
790
$a
0175
791
$a
Ph.D.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3622102
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9303077
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login