Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Alternatives to relational databases...
~
Velazquez, Enrique Israel.
Linked to FindBook
Google Book
Amazon
博客來
Alternatives to relational databases in precision medicine: Comparison of NoSQL approaches for big data storage using supercomputers.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Alternatives to relational databases in precision medicine: Comparison of NoSQL approaches for big data storage using supercomputers./
Author:
Velazquez, Enrique Israel.
Description:
232 p.
Notes:
Source: Dissertation Abstracts International, Volume: 77-04(E), Section: A.
Contained By:
Dissertation Abstracts International77-04A(E).
Subject:
Science education. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3735372
ISBN:
9781339242019
Alternatives to relational databases in precision medicine: Comparison of NoSQL approaches for big data storage using supercomputers.
Velazquez, Enrique Israel.
Alternatives to relational databases in precision medicine: Comparison of NoSQL approaches for big data storage using supercomputers.
- 232 p.
Source: Dissertation Abstracts International, Volume: 77-04(E), Section: A.
Thesis (Ph.D.)--University of Pittsburgh, 2015.
Improvements in medical and genomic technologies have dramatically increased the production of electronic data over the last decade. As a result, data management is rapidly becoming a major determinant, and urgent challenge, for the development of Precision Medicine. Although successful data management is achievable using Relational Database Management Systems (RDBMS), exponential data growth is a significant contributor to failure scenarios. Growing amounts of data can also be observed in other sectors, such as economics and business, which, together with the previous facts, suggests that alternate database approaches (NoSQL) may soon be required for efficient storage and management of big databases. However, this hypothesis has been difficult to test in the Precision Medicine field since alternate database architectures are complex to assess and means to integrate heterogeneous electronic health records (EHR) with dynamic genomic data are not easily available.
ISBN: 9781339242019Subjects--Topical Terms:
521340
Science education.
Alternatives to relational databases in precision medicine: Comparison of NoSQL approaches for big data storage using supercomputers.
LDR
:03119nmm a2200301 4500
001
2067764
005
20160418090201.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781339242019
035
$a
(MiAaPQ)AAI3735372
035
$a
AAI3735372
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Velazquez, Enrique Israel.
$3
3182629
245
1 0
$a
Alternatives to relational databases in precision medicine: Comparison of NoSQL approaches for big data storage using supercomputers.
300
$a
232 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-04(E), Section: A.
500
$a
Adviser: Michael Barmada.
502
$a
Thesis (Ph.D.)--University of Pittsburgh, 2015.
520
$a
Improvements in medical and genomic technologies have dramatically increased the production of electronic data over the last decade. As a result, data management is rapidly becoming a major determinant, and urgent challenge, for the development of Precision Medicine. Although successful data management is achievable using Relational Database Management Systems (RDBMS), exponential data growth is a significant contributor to failure scenarios. Growing amounts of data can also be observed in other sectors, such as economics and business, which, together with the previous facts, suggests that alternate database approaches (NoSQL) may soon be required for efficient storage and management of big databases. However, this hypothesis has been difficult to test in the Precision Medicine field since alternate database architectures are complex to assess and means to integrate heterogeneous electronic health records (EHR) with dynamic genomic data are not easily available.
520
$a
In this dissertation, we present a novel set of experiments for identifying NoSQL database approaches that enable effective data storage and management in Precision Medicine using patients' clinical and genomic information from the cancer genome atlas (TCGA). The first experiment draws on performance and scalability from biologically meaningful queries with differing complexity and database sizes. The second experiment measures performance and scalability in database updates without schema changes. The third experiment assesses performance and scalability in database updates with schema modifications due dynamic data. We have identified two NoSQL approach, based on Cassandra and Redis, which seems to be the ideal database management systems for our precision medicine queries in terms of performance and scalability. We present NoSQL approaches and show how they can be used to manage clinical and genomic big data. Our research is relevant to the public health since we are focusing on one of the main challenges to the development of Precision Medicine and, consequently, investigating a potential solution to the progressively increasing demands on health care.
590
$a
School code: 0178.
650
4
$a
Science education.
$3
521340
650
4
$a
Information science.
$3
554358
650
4
$a
Health education.
$3
559086
690
$a
0714
690
$a
0723
690
$a
0680
710
2
$a
University of Pittsburgh.
$3
958527
773
0
$t
Dissertation Abstracts International
$g
77-04A(E).
790
$a
0178
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3735372
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9300632
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login