Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Estimation and testing under sparsit...
~
Geer, Sara van de.
Linked to FindBook
Google Book
Amazon
博客來
Estimation and testing under sparsity = Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Estimation and testing under sparsity/ by Sara van de Geer.
Reminder of title:
Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
Author:
Geer, Sara van de.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xiii, 274 p. :ill., digital ;24 cm.
[NT 15003449]:
1 Introduction -- The Lasso -- 3 The square-root Lasso -- 4 The bias of the Lasso and worst possible sub-directions -- 5 Confidence intervals using the Lasso -- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms -- 9 Probability inequalities for matrices -- 10 Inequalities for the centred empirical risk and its derivative -- 11 The margin condition -- 12 Some worked-out examples -- 13 Brouwer's fixed point theorem and sparsity -- 14 Asymptotically linear estimators of the precision matrix -- 15 Lower bounds for sparse quadratic forms -- 16 Symmetrization, contraction and concentration -- 17 Chaining including concentration -- 18 Metric structure of convex hulls.
Contained By:
Springer eBooks
Subject:
Estimation theory. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-32774-7
ISBN:
9783319327747
Estimation and testing under sparsity = Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
Geer, Sara van de.
Estimation and testing under sparsity
Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /[electronic resource] :by Sara van de Geer. - Cham :Springer International Publishing :2016. - xiii, 274 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21590075-8434 ;. - Lecture notes in mathematics ;2046..
1 Introduction -- The Lasso -- 3 The square-root Lasso -- 4 The bias of the Lasso and worst possible sub-directions -- 5 Confidence intervals using the Lasso -- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms -- 9 Probability inequalities for matrices -- 10 Inequalities for the centred empirical risk and its derivative -- 11 The margin condition -- 12 Some worked-out examples -- 13 Brouwer's fixed point theorem and sparsity -- 14 Asymptotically linear estimators of the precision matrix -- 15 Lower bounds for sparse quadratic forms -- 16 Symmetrization, contraction and concentration -- 17 Chaining including concentration -- 18 Metric structure of convex hulls.
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
ISBN: 9783319327747
Standard No.: 10.1007/978-3-319-32774-7doiSubjects--Topical Terms:
565962
Estimation theory.
LC Class. No.: QA276.8
Dewey Class. No.: 519.544
Estimation and testing under sparsity = Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
LDR
:02521nmm a2200337 a 4500
001
2041595
003
DE-He213
005
20161129113539.0
006
m d
007
cr nn 008maaau
008
170118s2016 gw s 0 eng d
020
$a
9783319327747
$q
(electronic bk.)
020
$a
9783319327730
$q
(paper)
024
7
$a
10.1007/978-3-319-32774-7
$2
doi
035
$a
978-3-319-32774-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.8
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.544
$2
23
090
$a
QA276.8
$b
.G298 2016
100
1
$a
Geer, Sara van de.
$3
2200313
245
1 0
$a
Estimation and testing under sparsity
$h
[electronic resource] :
$b
Ecole d'Ete de probabilites de Saint-Flour XLV - 2015 /
$c
by Sara van de Geer.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 274 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2159
505
0
$a
1 Introduction -- The Lasso -- 3 The square-root Lasso -- 4 The bias of the Lasso and worst possible sub-directions -- 5 Confidence intervals using the Lasso -- 6 Structured sparsity -- 7 General loss with norm-penalty -- 8 Empirical process theory for dual norms -- 9 Probability inequalities for matrices -- 10 Inequalities for the centred empirical risk and its derivative -- 11 The margin condition -- 12 Some worked-out examples -- 13 Brouwer's fixed point theorem and sparsity -- 14 Asymptotically linear estimators of the precision matrix -- 15 Lower bounds for sparse quadratic forms -- 16 Symmetrization, contraction and concentration -- 17 Chaining including concentration -- 18 Metric structure of convex hulls.
520
$a
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
650
0
$a
Estimation theory.
$3
565962
650
0
$a
Inequalities (Mathematics)
$3
558383
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2046.
$3
1534285
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-32774-7
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9282457
電子資源
11.線上閱覽_V
電子書
EB QA276.8 .G298 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login