Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Improper Riemann integrals /
~
Roussos, Ioannis Markos.
Linked to FindBook
Google Book
Amazon
博客來
Improper Riemann integrals /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Improper Riemann integrals // Ioannis M. Roussos.
Author:
Roussos, Ioannis Markos.
Published:
Boca Raton :CRC Press, Taylor & Francis Group, : c2014.,
Description:
xiv, 675 p. :ill. ;24 cm.
[NT 15003449]:
Machine generated contents note: 1.Improper Riemann Integrals -- 1.1.Definitions and Examples -- 1.1.1.Applications -- 1.2.Cauchy Principal Value -- 1.3.Some Criteria of Existence -- 2.Real Analysis Techniques -- 2.1.Calculus Techniques -- 2.1.1.Applications -- 2.2.Integrals Dependent on Parameters -- 2.3.Commuting Limits with Integrals and Derivatives -- 2.3.1.Commuting Limits and Integrals -- 2.3.2.Commuting Limits and Derivatives -- 2.4.Double Integral Technique -- 2.5.Frullani Integrals -- 2.6.The Real Gamma and Beta Functions -- 2.6.1.The Gamma Function -- 2.6.2.The Beta Function -- 2.6.3.Applications -- 2.7.A Brief Overview of Laplace Transform -- 2.7.1.Laplace Transform -- 2.7.2.Inverse Laplace Transform -- 2.7.3.Applications -- 3.Complex Analysis Techniques -- 3.1.Basics of Complex Variables -- 3.1.1.Basic Definitions and Operations -- 3.1.2.Representations and Roots of Complex Numbers -- 3.1.3.Square Roots without De Moivre -- 3.2.Power Series -- a Quick Review -- 3.3.Limits, Continuity and Derivatives -- 3.4.Line Integrals in the Complex Plane -- 3.5.Cauchy-Goursat Theorem and Consequences -- 3.5.1.Complex Preliminaries and Notation -- 3.5.2.Cauchy-Goursat Theorem -- 3.5.3.Complex Logarithm -- 3.5.4.Complex Power Functions -- 3.5.5.Properties of Complex Logarithms and Powers -- 3.5.6.Consequence -- 3.5.7.Cauchy Integral Formula -- 3.5.8.Appendix -- 3.6.Roots, Singularities, Residues -- 3.6.1.Definitions, Laurent Expansion and Examples -- 3.6.2.Five Ways to Evaluate Residues -- 3.7.Contour Integration and Integrals -- 3.7.1.Residue Theorem and Examples -- 3.7.2.Contour Integration and Improper Real Integrals -- 3.7.3.Infinite Isolated Singularities and Integrals -- 3.7.4.Infinite Isolated Singularities and Series -- 3.7.5.Fourier Type Integrals -- 3.7.6.Rules and Properties of the Fourier Transform -- 3.7.7.Applications -- 3.7.8.The Fourier Transform with Complex Argument -- 3.7.9.Improper Integrals and Logarithms -- 3.7.10.Application to Inverse
[NT 15003449]:
Laplace Transform -- 3.8.Definite Integrals with Sines and Cosines -- 3.8.1.Rational Functions of Sines and Cosines -- 3.8.2.Other Techniques with Sines and Cosines -- 3.8.3.Appendix -- 4.List of Non-elementary Integrals and Sums in Text -- 4.1.List of Non-elementary Integrals -- 4.2.List of Non-elementary Sums.
Subject:
Riemann integral. -
ISBN:
9781466588073
Improper Riemann integrals /
Roussos, Ioannis Markos.
Improper Riemann integrals /
Ioannis M. Roussos. - Boca Raton :CRC Press, Taylor & Francis Group,c2014. - xiv, 675 p. :ill. ;24 cm.
Includes bibliographical references (p. 661-664) and index.
Machine generated contents note: 1.Improper Riemann Integrals -- 1.1.Definitions and Examples -- 1.1.1.Applications -- 1.2.Cauchy Principal Value -- 1.3.Some Criteria of Existence -- 2.Real Analysis Techniques -- 2.1.Calculus Techniques -- 2.1.1.Applications -- 2.2.Integrals Dependent on Parameters -- 2.3.Commuting Limits with Integrals and Derivatives -- 2.3.1.Commuting Limits and Integrals -- 2.3.2.Commuting Limits and Derivatives -- 2.4.Double Integral Technique -- 2.5.Frullani Integrals -- 2.6.The Real Gamma and Beta Functions -- 2.6.1.The Gamma Function -- 2.6.2.The Beta Function -- 2.6.3.Applications -- 2.7.A Brief Overview of Laplace Transform -- 2.7.1.Laplace Transform -- 2.7.2.Inverse Laplace Transform -- 2.7.3.Applications -- 3.Complex Analysis Techniques -- 3.1.Basics of Complex Variables -- 3.1.1.Basic Definitions and Operations -- 3.1.2.Representations and Roots of Complex Numbers -- 3.1.3.Square Roots without De Moivre -- 3.2.Power Series -- a Quick Review -- 3.3.Limits, Continuity and Derivatives -- 3.4.Line Integrals in the Complex Plane -- 3.5.Cauchy-Goursat Theorem and Consequences -- 3.5.1.Complex Preliminaries and Notation -- 3.5.2.Cauchy-Goursat Theorem -- 3.5.3.Complex Logarithm -- 3.5.4.Complex Power Functions -- 3.5.5.Properties of Complex Logarithms and Powers -- 3.5.6.Consequence -- 3.5.7.Cauchy Integral Formula -- 3.5.8.Appendix -- 3.6.Roots, Singularities, Residues -- 3.6.1.Definitions, Laurent Expansion and Examples -- 3.6.2.Five Ways to Evaluate Residues -- 3.7.Contour Integration and Integrals -- 3.7.1.Residue Theorem and Examples -- 3.7.2.Contour Integration and Improper Real Integrals -- 3.7.3.Infinite Isolated Singularities and Integrals -- 3.7.4.Infinite Isolated Singularities and Series -- 3.7.5.Fourier Type Integrals -- 3.7.6.Rules and Properties of the Fourier Transform -- 3.7.7.Applications -- 3.7.8.The Fourier Transform with Complex Argument -- 3.7.9.Improper Integrals and Logarithms -- 3.7.10.Application to Inverse
ISBN: 9781466588073UK76.99
LCCN: 2013037630Subjects--Topical Terms:
753036
Riemann integral.
LC Class. No.: QA311 / .R68 2014
Dewey Class. No.: 515/.43
Improper Riemann integrals /
LDR
:02952cam a2200217 a 4500
001
2017594
003
DLC
005
20140826101807.0
008
161003s2014 flua b 001 0 eng
010
$a
2013037630
020
$a
9781466588073
$q
(hardcover ;
$q
alk. paper) :
$c
UK76.99
020
$a
1466588071
$q
(hardcover ;
$q
alk. paper)
040
$a
DLC
$b
eng
$c
DLC
$d
DLC
042
$a
pcc
050
0 0
$a
QA311
$b
.R68 2014
082
0 0
$a
515/.43
$2
23
100
1
$a
Roussos, Ioannis Markos.
$3
2184898
245
1 0
$a
Improper Riemann integrals /
$c
Ioannis M. Roussos.
260
$a
Boca Raton :
$b
CRC Press, Taylor & Francis Group,
$c
c2014.
300
$a
xiv, 675 p. :
$b
ill. ;
$c
24 cm.
504
$a
Includes bibliographical references (p. 661-664) and index.
505
0
$a
Machine generated contents note: 1.Improper Riemann Integrals -- 1.1.Definitions and Examples -- 1.1.1.Applications -- 1.2.Cauchy Principal Value -- 1.3.Some Criteria of Existence -- 2.Real Analysis Techniques -- 2.1.Calculus Techniques -- 2.1.1.Applications -- 2.2.Integrals Dependent on Parameters -- 2.3.Commuting Limits with Integrals and Derivatives -- 2.3.1.Commuting Limits and Integrals -- 2.3.2.Commuting Limits and Derivatives -- 2.4.Double Integral Technique -- 2.5.Frullani Integrals -- 2.6.The Real Gamma and Beta Functions -- 2.6.1.The Gamma Function -- 2.6.2.The Beta Function -- 2.6.3.Applications -- 2.7.A Brief Overview of Laplace Transform -- 2.7.1.Laplace Transform -- 2.7.2.Inverse Laplace Transform -- 2.7.3.Applications -- 3.Complex Analysis Techniques -- 3.1.Basics of Complex Variables -- 3.1.1.Basic Definitions and Operations -- 3.1.2.Representations and Roots of Complex Numbers -- 3.1.3.Square Roots without De Moivre -- 3.2.Power Series -- a Quick Review -- 3.3.Limits, Continuity and Derivatives -- 3.4.Line Integrals in the Complex Plane -- 3.5.Cauchy-Goursat Theorem and Consequences -- 3.5.1.Complex Preliminaries and Notation -- 3.5.2.Cauchy-Goursat Theorem -- 3.5.3.Complex Logarithm -- 3.5.4.Complex Power Functions -- 3.5.5.Properties of Complex Logarithms and Powers -- 3.5.6.Consequence -- 3.5.7.Cauchy Integral Formula -- 3.5.8.Appendix -- 3.6.Roots, Singularities, Residues -- 3.6.1.Definitions, Laurent Expansion and Examples -- 3.6.2.Five Ways to Evaluate Residues -- 3.7.Contour Integration and Integrals -- 3.7.1.Residue Theorem and Examples -- 3.7.2.Contour Integration and Improper Real Integrals -- 3.7.3.Infinite Isolated Singularities and Integrals -- 3.7.4.Infinite Isolated Singularities and Series -- 3.7.5.Fourier Type Integrals -- 3.7.6.Rules and Properties of the Fourier Transform -- 3.7.7.Applications -- 3.7.8.The Fourier Transform with Complex Argument -- 3.7.9.Improper Integrals and Logarithms -- 3.7.10.Application to Inverse
505
$a
Laplace Transform -- 3.8.Definite Integrals with Sines and Cosines -- 3.8.1.Rational Functions of Sines and Cosines -- 3.8.2.Other Techniques with Sines and Cosines -- 3.8.3.Appendix -- 4.List of Non-elementary Integrals and Sums in Text -- 4.1.List of Non-elementary Integrals -- 4.2.List of Non-elementary Sums.
650
0
$a
Riemann integral.
$3
753036
based on 0 review(s)
ISSUES
壽豐校區(SF Campus)
-
last issue:
1 (2016/10/03)
Details
Location:
ALL
六樓西文書區HC-Z(6F Western Language Books)
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W0178645
六樓西文書區HC-Z(6F Western Language Books)
01.外借(書)_YB
一般圖書
QA311 R68 2014
一般使用(Normal)
On shelf
0
Reserve
1 records • Pages 1 •
1
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login