Slicing the truth = on the computabl...
Hirschfeldt, Denis Roman.

Linked to FindBook      Google Book      Amazon      博客來     
  • Slicing the truth = on the computable and reverse mathematics of combinatorial principles /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Slicing the truth/ Denis R. Hirschfeldt ; editors, Chitat Chong ... [et al.]
    Reminder of title: on the computable and reverse mathematics of combinatorial principles /
    Author: Hirschfeldt, Denis Roman.
    other author: Chong, C.-T.
    Published: Singapore ;World Scientific, : 2015.,
    Description: 1 online resource (xv, 214 p.)
    [NT 15003449]: 1. Setting off: An introduction. 1.1. A measure of motivation. 1.2. Computable mathematics. 1.3. Reverse mathematics. 1.4. An overview. 1.5. Further reading -- 2. Gathering our tools: Basic concepts and notation. 2.1. Computability theory. 2.2. Computability theoretic reductions. 2.3. Forcing -- 3. Finding our path: Konig's lemma and computability. 3.1. II[symbol] classes, basis theorems, and PA degrees. 3.2. Versions of Konig's lemma -- 4. Gauging our strength: Reverse mathematics. 4.1. RCA[symbol]. 4.2. Working in RCA[symbol]. 4.3. ACA[symbol]. 4.4. WKL[symbol]. 4.5. [symbol]-models. 4.6. First order axioms. 4.7. Further remarks -- 5. In defense of disarray -- 6. Achieving consensus: Ramsey's theorem. 6.1. Three proofs of Ramsey's theorem. 6.2. Ramsey's theorem and the arithmetic hierarchy. 6.3. RT, ACA[symbol], and the Paris-Harrington theorem. 6.4. Stability and cohesiveness. 6.5. Mathias forcing and cohesive sets. 6.6. Mathias forcing and stable colorings. 6.7. Seetapun's theorem and its extensions. 6.8. Ramsey's theorem and first order axioms. 6.9. Uniformity -- 7. Preserving our power: Conservativity. 7.1. Conservativity over first order systems. 7.2. WKL[symbol] and II[symbol]-conservativity. 7.3. COH and r-II[symbol]-conservativity -- 8. Drawing a map: Five diagrams -- 9. Exploring our surroundings: The world below RT[symbol]. 9.1. Ascending and descending sequences. 9.2. Other combinatorial principles provable from RT[symbol]. 9.3. Atomic models and omitting types -- 10. Charging ahead: Further topics. 10.1. The Dushnik-Miller theorem. 10.2. Linearizing well-founded partial orders. 10.3. The world above ACA[symbol]. 10.4. Still further topics, and a final exercise.
    Subject: Reverse mathematics. -
    Online resource: http://www.worldscientific.com/worldscibooks/10.1142/9208#t=toc
    ISBN: 9789814612623 (electronic bk.)
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9269129 電子資源 01.外借(書)_YB 電子書 EB QA9.25 .H57 2015eb 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login