Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Malonyl-conjugates of isoflavones: S...
~
Yerramsetty, Vamsidhar.
Linked to FindBook
Google Book
Amazon
博客來
Malonyl-conjugates of isoflavones: Structure, Bioavailability and Chemical Modifications during Processing.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Malonyl-conjugates of isoflavones: Structure, Bioavailability and Chemical Modifications during Processing./
Author:
Yerramsetty, Vamsidhar.
Description:
187 p.
Notes:
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
Contained By:
Dissertation Abstracts International75-02B(E).
Subject:
Agriculture, Food Science and Technology. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3600965
ISBN:
9781303513459
Malonyl-conjugates of isoflavones: Structure, Bioavailability and Chemical Modifications during Processing.
Yerramsetty, Vamsidhar.
Malonyl-conjugates of isoflavones: Structure, Bioavailability and Chemical Modifications during Processing.
- 187 p.
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
Thesis (Ph.D.)--University of Minnesota, 2013.
Soy isoflavones are often associated with prevention of cancer, cardiovascular diseases, osteoporosis, and postmenopausal symptoms. However, the demonstration of theses physiological effects is highly inconsistent. Not all soy foods deliver the same isoflavone-associated benefits. Inconsistency in isoflavone research is partly attributed to the inadequate profiling of isoflavones, lack of standardization of the source of isoflavones, and lack of standard analytical methods for profiling and quantifying isoflavones present in different soy matrices. We are convinced that inconsistent results are due to differences in the bioavailability of the different isoflavone forms consumed. Since isoflavones in soy foods differ in their forms (e.g. conjugated and non-conjugated), large differences may exist in their bioavailability. Therefore, it is crucial to adequately profile the administered isoflavones and study the effect of their conjugation on their bioavailability. Additionally, isomerization of different isoflavone forms occurs upon thermal processing. Complete structural elucidation of the isomers and determination of their thermal stability in soy systems are important for understanding their physiological relevance. Therefore, the overall objective of this study was to determine effect of processing on the chemical modifications of isoflavones and to detect all biologically relevant forms, together with providing adequate and reliable bioavailability data for each of the most abundant isoflavone forms. Isoflavones were extracted from soy grits and were separated and isolated using semi-preparative liquid chromatography. Identification of the different isoflavones forms and isomers was accomplished based on UV wave scan, mass spectrometry, and nuclear magnetic resonance (NMR) analysis. Effect of thermal processing on isomer stability was determined by subjecting soymilk to thermal treatment at 100°C for time intervals ranging from 1 to 60 min. A rapid analytical procedure was developed to quantify isoflavones in biological fluids using stable isotope dilution mass spectrometry (SID-LCMS). Two novel isotopically labeled (SIL) analogues of natural SERMs, genistein and daidzein were synthesized using a H/D exchange reaction mechanism. Computational chemistry coupled with MS and NMR data confirmed the site and mechanism of deuteration. The developed method was sensitive, selective, precise and accurate. Bioavailability of malonylglucosides and their respective non-conjugated glucosides was determined in a model rat system. Rats were gavaged with an assigned isoflavone form. Blood and urine samples were collected at different time intervals. Different isoflavone metabolites in plasma were determined using the developed SID-LCMS method. Bioavailability was determined by calculating pharmokinetic parameters, assuming first order disposition kinetics. NMR characterization of the malonylglucoside isomers revealed its structure to be 4"-O-malonylglucosides, suggesting a malonyl migration from the glucose-6-position to the glucose-4-position. The malonylgenistin isomer represented 6-9 % of the total calculated genistein content in soymilk heated at 100°C for various periods of time. Based on rat peak plasma and urine levels and area under the curve (AUC) of the aglycone post ingestion of the respective isoflavones, it was quite evident that the malonylglucosides were significantly (P ≤ 0.05) less bioavailable than their non-conjugated counterparts. The present work provided full elucidation of the chemical structure of malonylglucoside isomers. We demonstrated for the first time that the formation of the malonylisomers is governed by thermal processing time in a soymilk system. Disregarding the isomer formation upon heating can result in overestimation of loss in total isoflavone content and misinterpretation of the biological contributions. Additionally, this work provided a validated analytical SID-LC/MS method to detect natural and known synthetic selective estrogen receptor modulators (SERMs) in a single analytical assay. Finally, this work differentiated for the first time the bioavailability of malonylglucosides as compared to their non-conjugated counterparts. The observed differences explained to a significant extent the controversy in isoflavone research. We believe that the results of this work will help streamline the experimental approach undertaken by various researchers to achieve consistent clinical conclusions and to optimize the processing parameters that result in the most bioavailable isoflavone profile, thus maximizing their health benefits.
ISBN: 9781303513459Subjects--Topical Terms:
1017813
Agriculture, Food Science and Technology.
Malonyl-conjugates of isoflavones: Structure, Bioavailability and Chemical Modifications during Processing.
LDR
:05534nam a2200265 4500
001
1964779
005
20141010092816.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303513459
035
$a
(MiAaPQ)AAI3600965
035
$a
AAI3600965
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Yerramsetty, Vamsidhar.
$3
2101292
245
1 0
$a
Malonyl-conjugates of isoflavones: Structure, Bioavailability and Chemical Modifications during Processing.
300
$a
187 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-02(E), Section: B.
500
$a
Adviser: Baraem Ismail.
502
$a
Thesis (Ph.D.)--University of Minnesota, 2013.
520
$a
Soy isoflavones are often associated with prevention of cancer, cardiovascular diseases, osteoporosis, and postmenopausal symptoms. However, the demonstration of theses physiological effects is highly inconsistent. Not all soy foods deliver the same isoflavone-associated benefits. Inconsistency in isoflavone research is partly attributed to the inadequate profiling of isoflavones, lack of standardization of the source of isoflavones, and lack of standard analytical methods for profiling and quantifying isoflavones present in different soy matrices. We are convinced that inconsistent results are due to differences in the bioavailability of the different isoflavone forms consumed. Since isoflavones in soy foods differ in their forms (e.g. conjugated and non-conjugated), large differences may exist in their bioavailability. Therefore, it is crucial to adequately profile the administered isoflavones and study the effect of their conjugation on their bioavailability. Additionally, isomerization of different isoflavone forms occurs upon thermal processing. Complete structural elucidation of the isomers and determination of their thermal stability in soy systems are important for understanding their physiological relevance. Therefore, the overall objective of this study was to determine effect of processing on the chemical modifications of isoflavones and to detect all biologically relevant forms, together with providing adequate and reliable bioavailability data for each of the most abundant isoflavone forms. Isoflavones were extracted from soy grits and were separated and isolated using semi-preparative liquid chromatography. Identification of the different isoflavones forms and isomers was accomplished based on UV wave scan, mass spectrometry, and nuclear magnetic resonance (NMR) analysis. Effect of thermal processing on isomer stability was determined by subjecting soymilk to thermal treatment at 100°C for time intervals ranging from 1 to 60 min. A rapid analytical procedure was developed to quantify isoflavones in biological fluids using stable isotope dilution mass spectrometry (SID-LCMS). Two novel isotopically labeled (SIL) analogues of natural SERMs, genistein and daidzein were synthesized using a H/D exchange reaction mechanism. Computational chemistry coupled with MS and NMR data confirmed the site and mechanism of deuteration. The developed method was sensitive, selective, precise and accurate. Bioavailability of malonylglucosides and their respective non-conjugated glucosides was determined in a model rat system. Rats were gavaged with an assigned isoflavone form. Blood and urine samples were collected at different time intervals. Different isoflavone metabolites in plasma were determined using the developed SID-LCMS method. Bioavailability was determined by calculating pharmokinetic parameters, assuming first order disposition kinetics. NMR characterization of the malonylglucoside isomers revealed its structure to be 4"-O-malonylglucosides, suggesting a malonyl migration from the glucose-6-position to the glucose-4-position. The malonylgenistin isomer represented 6-9 % of the total calculated genistein content in soymilk heated at 100°C for various periods of time. Based on rat peak plasma and urine levels and area under the curve (AUC) of the aglycone post ingestion of the respective isoflavones, it was quite evident that the malonylglucosides were significantly (P ≤ 0.05) less bioavailable than their non-conjugated counterparts. The present work provided full elucidation of the chemical structure of malonylglucoside isomers. We demonstrated for the first time that the formation of the malonylisomers is governed by thermal processing time in a soymilk system. Disregarding the isomer formation upon heating can result in overestimation of loss in total isoflavone content and misinterpretation of the biological contributions. Additionally, this work provided a validated analytical SID-LC/MS method to detect natural and known synthetic selective estrogen receptor modulators (SERMs) in a single analytical assay. Finally, this work differentiated for the first time the bioavailability of malonylglucosides as compared to their non-conjugated counterparts. The observed differences explained to a significant extent the controversy in isoflavone research. We believe that the results of this work will help streamline the experimental approach undertaken by various researchers to achieve consistent clinical conclusions and to optimize the processing parameters that result in the most bioavailable isoflavone profile, thus maximizing their health benefits.
590
$a
School code: 0130.
650
4
$a
Agriculture, Food Science and Technology.
$3
1017813
690
$a
0359
710
2
$a
University of Minnesota.
$b
Food Science.
$3
1262936
773
0
$t
Dissertation Abstracts International
$g
75-02B(E).
790
$a
0130
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3600965
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9259778
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login