Discrete variational derivative meth...
Furihata, Daisuke.

Linked to FindBook      Google Book      Amazon      博客來     
  • Discrete variational derivative method = a structurepreserving numerical method for partial differential equations /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Discrete variational derivative method/ Daisuke Furihata, Takayasu Matsuo.
    Reminder of title: a structurepreserving numerical method for partial differential equations /
    Author: Furihata, Daisuke.
    other author: Matsuo, Takayasu.
    Published: Boca Raton, FL :Chapman and Hall/CRC, : c2011.,
    Description: 1 online resource (xi, 376 p.) :ill.
    [NT 15003449]: 1. Introduction and summary of this book An introductory example: the spinodal decomposition - History -- Derivation of dissipative or conservative schemes advanced topics -- 2. Target partial differential equations -- Variational derivatives -- First-order real-valued PDEs -- First-order complex-valued PDEs -- Systems of first-order PDEs -- Second-order PDEs -- 3. Discrete variational derivative method -- Discrete symbols and formulas -- Procedure for first-order real-valued PDEs -- Procedure for first-order complex-valued PDEs -- Procedure for systems of first-order PDEs -- Procedure for second-order PDEs -- Preliminaries on discrete functional analysis -- 4. Applications -- Target PDEs 1 -- Target PDEs 2 -- Target PDEs 3 -- Target PDEs 4 -- Target PDEs 5 -- Target PDEs 7 -- Other equations -- 5. Advanced topic I: design of high-order schemes -- Orders of accuracy of schemes -- Spatially high-order schemes -- Temporally high-order schemes: composition method -- Temporally high-order schemes: high-order discrete variational derivatives -- 6. Advanced topic II: design of linearly-implicit schemes -- Basic idea for constructing linearly-implicit schemes -- Multiple-points discrete variational derivative -- Design of schemes -- Applications -- Remarks on the stability of linearly-implicit schemes -- 7. Advanced topic III: further remarks -- Solving system of nonlinear equations -- Switch to Galerkin framework -- Extension to non-rectangular meshes on 2D Region -- A. Semi-discrete schemes in space B -- Proof of Proposition 3.4.
    Subject: Differential equations, Partial - Numerical solutions. -
    Online resource: http://www.crcnetbase.com/isbn/9781420094459
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login