語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Improving the specificity of biologi...
~
Troyanskaya, Olga G.
FindBook
Google Book
Amazon
博客來
Improving the specificity of biological signal detection from microarray data.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Improving the specificity of biological signal detection from microarray data./
作者:
Troyanskaya, Olga G.
面頁冊數:
118 p.
附註:
Source: Dissertation Abstracts International, Volume: 64-09, Section: B, page: 4181.
Contained By:
Dissertation Abstracts International64-09B.
標題:
Biology, Genetics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3104167
Improving the specificity of biological signal detection from microarray data.
Troyanskaya, Olga G.
Improving the specificity of biological signal detection from microarray data.
- 118 p.
Source: Dissertation Abstracts International, Volume: 64-09, Section: B, page: 4181.
Thesis (Ph.D.)--Stanford University, 2003.
Microarray analysis allows for genome-level exploration of gene expression by taking a snapshot of the cell at a specific point in time. Such datasets may provide insight into fundamental biological questions as well as address clinical issues such as diagnosis and therapy selection. The resulting data sets are very large and complex, and often suffer from sacrifice of specificity for scale. Sophisticated computational tools are needed for nontrivial, highly accurate, and consistent biological interpretation of microarray data.Subjects--Topical Terms:
1017730
Biology, Genetics.
Improving the specificity of biological signal detection from microarray data.
LDR
:02512nmm 2200289 4500
001
1861385
005
20041111121754.5
008
130614s2003 eng d
035
$a
(UnM)AAI3104167
035
$a
AAI3104167
040
$a
UnM
$c
UnM
100
1
$a
Troyanskaya, Olga G.
$3
1948986
245
1 0
$a
Improving the specificity of biological signal detection from microarray data.
300
$a
118 p.
500
$a
Source: Dissertation Abstracts International, Volume: 64-09, Section: B, page: 4181.
500
$a
Advisers: Russ B. Altman; David Botstein.
502
$a
Thesis (Ph.D.)--Stanford University, 2003.
520
$a
Microarray analysis allows for genome-level exploration of gene expression by taking a snapshot of the cell at a specific point in time. Such datasets may provide insight into fundamental biological questions as well as address clinical issues such as diagnosis and therapy selection. The resulting data sets are very large and complex, and often suffer from sacrifice of specificity for scale. Sophisticated computational tools are needed for nontrivial, highly accurate, and consistent biological interpretation of microarray data.
520
$a
This dissertation addresses the issue of improving the specificity of biological signal detection from microarray data. I address this problem on three levels. First, I developed two robust and accurate algorithms for missing value estimation for microarray data, KNNimpute and SVDimpute. The algorithms perform overwhelmingly better than row averaging or zero filling methods, and KNNimpute is robust to the choice of parameters used, percent of values missing, and type of data. Second, I created MAGIC, a flexible probabilistic framework for gene function prediction based on integrated analysis of high-throughput biological data, including gene expression data and protein-protein interactions data. I applied MAGIC to S. cerevisiae data and showed that it improves the specificity of gene grouping compared to its input microarray-based clustering methods. Finally, I suggested and evaluated methods for identification of differentially expressed genes and propose a general procedure for evaluation of other biomarker identification methods.
590
$a
School code: 0212.
650
4
$a
Biology, Genetics.
$3
1017730
650
4
$a
Computer Science.
$3
626642
690
$a
0369
690
$a
0984
710
2 0
$a
Stanford University.
$3
754827
773
0
$t
Dissertation Abstracts International
$g
64-09B.
790
1 0
$a
Altman, Russ B.,
$e
advisor
790
1 0
$a
Botstein, David,
$e
advisor
790
$a
0212
791
$a
Ph.D.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3104167
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9180085
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入