Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Doping in zinc oxide thin films.
~
Yang, Zheng.
Linked to FindBook
Google Book
Amazon
博客來
Doping in zinc oxide thin films.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Doping in zinc oxide thin films./
Author:
Yang, Zheng.
Description:
167 p.
Notes:
Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3708.
Contained By:
Dissertation Abstracts International70-06B.
Subject:
Engineering, Electronics and Electrical. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3359913
ISBN:
9781109228502
Doping in zinc oxide thin films.
Yang, Zheng.
Doping in zinc oxide thin films.
- 167 p.
Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3708.
Thesis (Ph.D.)--University of California, Riverside, 2009.
Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ∼1019 cm -3, indicating a carrier-mediated mechanism for ferromagnetism. The anomalous Hall effect was observed in the ZnO:Co thin films. The anomalous Hall coefficient and its dependence on longitudinal resistivity were analyzed. The presence of a side-jump contribution further supports an intrinsic origin for ferromagnetism in ZnO:Co thin films. These observations together with the magnetic anisotropy and magnetoresistance results, supports an intrinsic carrier-mediated mechanism for ferromagnetic exchange in ZnO:Co diluted magnetic semiconductor materials. Well-above room temperature and electron-concentration dependent ferromagnetism was observed in n-type ZnO:Mn films, indicating long-range ferromagnetic order. Magnetic anisotropy was also observed in these ZnO:Mn films, which is another indication for intrinsic ferromagnetism. The electron-mediated ferromagnetism in n-type ZnO:Mn contradicts the existing theory that the magnetic exchange in ZnO:Mn materials is mediated by holes. Microstructural studies using transmission electron microscopy were performed on a ZnO:Mn diluted magnetic semiconductor thin film. The high-resolution imaging and electron diffraction reveal that the ZnO:Mn thin film has a high structual quality and is free of clustering/segregated phases. High-angle annular dark field imaging and x-ray diffraction patterns further support the absence of phase segregation in the film. Magnetotransport was studied on the ZnO:Mn samples, and from these measurements, the temperature dependence of the resistivity and magnetoresistance, electron carrier concentration, and anomalous Hall coefficient of the sample is discussed. The anomalous Hall coefficient depends on the resistivity, and from this relation, the presence of the quadratic dependence term supports the intrinsic spin-obit origin of the anomalous Hall effect in the ZnO:Mn thin film.
ISBN: 9781109228502Subjects--Topical Terms:
626636
Engineering, Electronics and Electrical.
Doping in zinc oxide thin films.
LDR
:04807nam 2200313 4500
001
1391138
005
20101228074308.5
008
130515s2009 ||||||||||||||||| ||eng d
020
$a
9781109228502
035
$a
(UMI)AAI3359913
035
$a
AAI3359913
040
$a
UMI
$c
UMI
100
1
$a
Yang, Zheng.
$3
1531263
245
1 0
$a
Doping in zinc oxide thin films.
300
$a
167 p.
500
$a
Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3708.
500
$a
Adviser: Jianlin Liu.
502
$a
Thesis (Ph.D.)--University of California, Riverside, 2009.
520
$a
Doping in zinc oxide (ZnO) thin films is discussed in this dissertation. The optimizations of undoped ZnO thin film growth using molecular-beam epitaxy (MBE) are discussed. The effect of the oxygen ECR plasma power on the growth rate, structural, electrical, and optical properties of the ZnO thin films were studied. It was found that larger ECR power leads to higher growth rate, better crystallinity, lower electron carrier concentration, larger resistivity, and smaller density of non-radiative luminescence centers in the ZnO thin films. Low-temperature photoluminescence (PL) measurements were carried out in undoped and Ga-doped ZnO thin films grown by molecular-beam epitaxy. As the carrier concentration increases from 1.8 x 1018 to 1.8 x 1020 cm-3, the dominant PL line at 9 K changes from I1 (3.368--3.371 eV), to IDA (3.317--3.321 eV), and finally to I8 (3.359 eV). The dominance of I1, due to ionized-donor bound excitons, is unexpected in n-type samples, but is shown to be consistent with the temperature-dependent Hall fitting results. We also show that IDA has characteristics of a donor-acceptor-pair transition, and use a detailed, quantitative analysis to argue that it arises from GaZn donors paired with Zn-vacancy (VZn) acceptors. In this analysis, the GaZn0/+ energy is well-known from two-electron satellite transitions, and the VZn0/- energy is taken from a recent theoretical calculation. Typical behaviors of Sb-doped p-type ZnO are presented. The Sb doping mechanisms and preference in ZnO are discussed. Diluted magnetic semiconducting ZnO:Co thin films with above room-temperature TC were prepared. Transmission electron microscopy and x-ray diffraction studies indicate the ZnO:Co thin films are free of secondary phases. The magnetization of the ZnO:Co thin films shows a free electron carrier concentration dependence, which increases dramatically when the free electron carrier concentration exceeds ∼1019 cm -3, indicating a carrier-mediated mechanism for ferromagnetism. The anomalous Hall effect was observed in the ZnO:Co thin films. The anomalous Hall coefficient and its dependence on longitudinal resistivity were analyzed. The presence of a side-jump contribution further supports an intrinsic origin for ferromagnetism in ZnO:Co thin films. These observations together with the magnetic anisotropy and magnetoresistance results, supports an intrinsic carrier-mediated mechanism for ferromagnetic exchange in ZnO:Co diluted magnetic semiconductor materials. Well-above room temperature and electron-concentration dependent ferromagnetism was observed in n-type ZnO:Mn films, indicating long-range ferromagnetic order. Magnetic anisotropy was also observed in these ZnO:Mn films, which is another indication for intrinsic ferromagnetism. The electron-mediated ferromagnetism in n-type ZnO:Mn contradicts the existing theory that the magnetic exchange in ZnO:Mn materials is mediated by holes. Microstructural studies using transmission electron microscopy were performed on a ZnO:Mn diluted magnetic semiconductor thin film. The high-resolution imaging and electron diffraction reveal that the ZnO:Mn thin film has a high structual quality and is free of clustering/segregated phases. High-angle annular dark field imaging and x-ray diffraction patterns further support the absence of phase segregation in the film. Magnetotransport was studied on the ZnO:Mn samples, and from these measurements, the temperature dependence of the resistivity and magnetoresistance, electron carrier concentration, and anomalous Hall coefficient of the sample is discussed. The anomalous Hall coefficient depends on the resistivity, and from this relation, the presence of the quadratic dependence term supports the intrinsic spin-obit origin of the anomalous Hall effect in the ZnO:Mn thin film.
590
$a
School code: 0032.
650
4
$a
Engineering, Electronics and Electrical.
$3
626636
650
4
$a
Physics, Condensed Matter.
$3
1018743
650
4
$a
Engineering, Materials Science.
$3
1017759
690
$a
0544
690
$a
0611
690
$a
0794
710
2
$a
University of California, Riverside.
$b
Electrical Engineering.
$3
1669528
773
0
$t
Dissertation Abstracts International
$g
70-06B.
790
1 0
$a
Liu, Jianlin,
$e
advisor
790
1 0
$a
Balandin, Alexander A.
$e
committee member
790
1 0
$a
Beyermann, Ward P.
$e
committee member
790
$a
0032
791
$a
Ph.D.
792
$a
2009
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3359913
筆 0 讀者評論
館藏地:
ALL
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9154277
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入