Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Boundary value problems and hardy sp...
~
Auscher, Pascal.
Linked to FindBook
Google Book
Amazon
博客來
Boundary value problems and hardy spaces for elliptic systems with block structure
Record Type:
Electronic resources : Monograph/item
Title/Author:
Boundary value problems and hardy spaces for elliptic systems with block structure/ by Pascal Auscher, Moritz Egert.
Author:
Auscher, Pascal.
other author:
Egert, Moritz.
Published:
Cham :Springer International Publishing : : 2023.,
Description:
xiii, 310 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter. 1. Introduction and main results -- Chapter. 2. Preliminaries on function spaces -- Chapter. 3. Preliminaries on operator theory -- Chapter. 4. Hp - Hq bounded families -- Chapter. 5. Conservation properties -- Chapter. 6. The four critical numbers -- Chapter. 7. Riesz transform estimates: Part I -- Chapter. 8. Operator-adapted spaces -- Chapter. 9. Identification of adapted Hardy spaces -- Chapter. 10. A digression: H -calculus and analyticity -- Chapter. 11. Riesz transform estimates: Part II -- Chapter. 12. Critical numbers for Poisson and heat semigroups -- Chapter. 13. Lp boundedness of the Hodge projector -- Chapter. 14. Critical numbers and kernel bounds -- Chapter. 15. Comparison with the Auscher-Stahlhut interval -- Chapter. 16. Basic properties of weak solutions -- Chapter. 17. Existence in Hp Dirichlet and Regularity problems -- Chapter. 18. Existence in the Dirichlet problems with data -- Chapter. 19. Existence in Dirichlet problems with fractional regularity data -- Chapter. 20. Single layer operators for L and estimates for L-1 -- Chapter. 21. Uniqueness in regularity and Dirichlet problems -- Chapter. 22. The Neumann problem -- Appendix A. Non-tangential maximal functions and traces -- Appendix B. The Lp-realization of a sectorial operator in L2 -- References -- Index.
Contained By:
Springer Nature eBook
Subject:
Differential equations, Elliptic. -
Online resource:
https://doi.org/10.1007/978-3-031-29973-5
ISBN:
9783031299735
Boundary value problems and hardy spaces for elliptic systems with block structure
Auscher, Pascal.
Boundary value problems and hardy spaces for elliptic systems with block structure
[electronic resource] /by Pascal Auscher, Moritz Egert. - Cham :Springer International Publishing :2023. - xiii, 310 p. :ill., digital ;24 cm. - Progress in mathematics,v. 3462296-505X ;. - Progress in mathematics ;v. 346..
Chapter. 1. Introduction and main results -- Chapter. 2. Preliminaries on function spaces -- Chapter. 3. Preliminaries on operator theory -- Chapter. 4. Hp - Hq bounded families -- Chapter. 5. Conservation properties -- Chapter. 6. The four critical numbers -- Chapter. 7. Riesz transform estimates: Part I -- Chapter. 8. Operator-adapted spaces -- Chapter. 9. Identification of adapted Hardy spaces -- Chapter. 10. A digression: H -calculus and analyticity -- Chapter. 11. Riesz transform estimates: Part II -- Chapter. 12. Critical numbers for Poisson and heat semigroups -- Chapter. 13. Lp boundedness of the Hodge projector -- Chapter. 14. Critical numbers and kernel bounds -- Chapter. 15. Comparison with the Auscher-Stahlhut interval -- Chapter. 16. Basic properties of weak solutions -- Chapter. 17. Existence in Hp Dirichlet and Regularity problems -- Chapter. 18. Existence in the Dirichlet problems with data -- Chapter. 19. Existence in Dirichlet problems with fractional regularity data -- Chapter. 20. Single layer operators for L and estimates for L-1 -- Chapter. 21. Uniqueness in regularity and Dirichlet problems -- Chapter. 22. The Neumann problem -- Appendix A. Non-tangential maximal functions and traces -- Appendix B. The Lp-realization of a sectorial operator in L2 -- References -- Index.
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.
ISBN: 9783031299735
Standard No.: 10.1007/978-3-031-29973-5doiSubjects--Topical Terms:
541859
Differential equations, Elliptic.
LC Class. No.: QA377
Dewey Class. No.: 515.3533
Boundary value problems and hardy spaces for elliptic systems with block structure
LDR
:03624nmm a2200337 a 4500
001
2333232
003
DE-He213
005
20230727134750.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031299735
$q
(electronic bk.)
020
$a
9783031299728
$q
(paper)
024
7
$a
10.1007/978-3-031-29973-5
$2
doi
035
$a
978-3-031-29973-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.3533
$2
23
090
$a
QA377
$b
.A932 2023
100
1
$a
Auscher, Pascal.
$3
708998
245
1 0
$a
Boundary value problems and hardy spaces for elliptic systems with block structure
$h
[electronic resource] /
$c
by Pascal Auscher, Moritz Egert.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2023.
300
$a
xiii, 310 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Progress in mathematics,
$x
2296-505X ;
$v
v. 346
505
0
$a
Chapter. 1. Introduction and main results -- Chapter. 2. Preliminaries on function spaces -- Chapter. 3. Preliminaries on operator theory -- Chapter. 4. Hp - Hq bounded families -- Chapter. 5. Conservation properties -- Chapter. 6. The four critical numbers -- Chapter. 7. Riesz transform estimates: Part I -- Chapter. 8. Operator-adapted spaces -- Chapter. 9. Identification of adapted Hardy spaces -- Chapter. 10. A digression: H -calculus and analyticity -- Chapter. 11. Riesz transform estimates: Part II -- Chapter. 12. Critical numbers for Poisson and heat semigroups -- Chapter. 13. Lp boundedness of the Hodge projector -- Chapter. 14. Critical numbers and kernel bounds -- Chapter. 15. Comparison with the Auscher-Stahlhut interval -- Chapter. 16. Basic properties of weak solutions -- Chapter. 17. Existence in Hp Dirichlet and Regularity problems -- Chapter. 18. Existence in the Dirichlet problems with data -- Chapter. 19. Existence in Dirichlet problems with fractional regularity data -- Chapter. 20. Single layer operators for L and estimates for L-1 -- Chapter. 21. Uniqueness in regularity and Dirichlet problems -- Chapter. 22. The Neumann problem -- Appendix A. Non-tangential maximal functions and traces -- Appendix B. The Lp-realization of a sectorial operator in L2 -- References -- Index.
520
$a
In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents. Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established. The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data. The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator. Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems: the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.
650
0
$a
Differential equations, Elliptic.
$3
541859
650
0
$a
Boundary value problems.
$3
527599
650
0
$a
Hardy spaces.
$3
628101
650
1 4
$a
Differential Equations.
$3
907890
650
2 4
$a
Abstract Harmonic Analysis.
$3
891093
650
2 4
$a
Operator Theory.
$3
897311
650
2 4
$a
Functional Analysis.
$3
893943
700
1
$a
Egert, Moritz.
$3
3663826
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Progress in mathematics ;
$v
v. 346.
$3
3663827
856
4 0
$u
https://doi.org/10.1007/978-3-031-29973-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9459437
電子資源
11.線上閱覽_V
電子書
EB QA377
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login