Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Compressed sensing in information pr...
~
Kutyniok, Gitta.
Linked to FindBook
Google Book
Amazon
博客來
Compressed sensing in information processing
Record Type:
Electronic resources : Monograph/item
Title/Author:
Compressed sensing in information processing/ edited by Gitta Kutyniok, Holger Rauhut, Robert J. Kunsch.
other author:
Kutyniok, Gitta.
Published:
Cham :Springer International Publishing : : 2022.,
Description:
xvii, 542 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Hierarchical compressed sensing (G. Wunder) -- Proof Methods for Robust Low-Rank Matrix Recovery (T. Fuchs) -- New Challenges in Covariance Estimation: Multiple Structures and Coarse Quantization (J. Maly) -- Sparse Deterministic and Stochastic Channels: Identification of Spreading Functions and Covariances (Dae Gwan Lee) -- Analysis of Sparse Recovery Algorithms via the Replica Method (A. Bereyhi) -- Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing (F.H. Fischer) -- Recovery under Side Constraints (M. Pesavento) -- Compressive Sensing and Neural Networks from a Statistical Learning Perspective (E. Schnoor) -- Angular Scattering Function Estimation Using Deep Neural Networks (Y. Song) -- Fast Radio Propagation Prediction with Deep Learning (R. Levie) -- Active Channel Sparsification: Realizing Frequency Division Duplexing Massive MIMO with Minimal Overhead (M. B. Khalilsarai) -- Atmospheric Radar Imaging Improvements Using Compressed Sensing and MIMO (J. O. Aweda) -- Over-the-Air Computation for Distributed Machine Learning and Consensus in Large Wireless Networks (M. Frey) -- Information Theory and Recovery Algorithms for Data Fusion in Earth Observation (M. Fornasier) -- Sparse Recovery of Sound Fields Using Measurements from Moving Microphones (A. Mertins) -- Compressed Sensing in the Spherical Near-Field to Far-Field Transformation (C. Culotta-López)
Contained By:
Springer Nature eBook
Subject:
Compressed sensing (Telecommunication) -
Online resource:
https://doi.org/10.1007/978-3-031-09745-4
ISBN:
9783031097454
Compressed sensing in information processing
Compressed sensing in information processing
[electronic resource] /edited by Gitta Kutyniok, Holger Rauhut, Robert J. Kunsch. - Cham :Springer International Publishing :2022. - xvii, 542 p. :ill. (some col.), digital ;24 cm. - Applied and numerical harmonic analysis,2296-5017. - Applied and numerical harmonic analysis..
Hierarchical compressed sensing (G. Wunder) -- Proof Methods for Robust Low-Rank Matrix Recovery (T. Fuchs) -- New Challenges in Covariance Estimation: Multiple Structures and Coarse Quantization (J. Maly) -- Sparse Deterministic and Stochastic Channels: Identification of Spreading Functions and Covariances (Dae Gwan Lee) -- Analysis of Sparse Recovery Algorithms via the Replica Method (A. Bereyhi) -- Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing (F.H. Fischer) -- Recovery under Side Constraints (M. Pesavento) -- Compressive Sensing and Neural Networks from a Statistical Learning Perspective (E. Schnoor) -- Angular Scattering Function Estimation Using Deep Neural Networks (Y. Song) -- Fast Radio Propagation Prediction with Deep Learning (R. Levie) -- Active Channel Sparsification: Realizing Frequency Division Duplexing Massive MIMO with Minimal Overhead (M. B. Khalilsarai) -- Atmospheric Radar Imaging Improvements Using Compressed Sensing and MIMO (J. O. Aweda) -- Over-the-Air Computation for Distributed Machine Learning and Consensus in Large Wireless Networks (M. Frey) -- Information Theory and Recovery Algorithms for Data Fusion in Earth Observation (M. Fornasier) -- Sparse Recovery of Sound Fields Using Measurements from Moving Microphones (A. Mertins) -- Compressed Sensing in the Spherical Near-Field to Far-Field Transformation (C. Culotta-López)
This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.
ISBN: 9783031097454
Standard No.: 10.1007/978-3-031-09745-4doiSubjects--Topical Terms:
3214582
Compressed sensing (Telecommunication)
LC Class. No.: TA1638 / .C65 2022
Dewey Class. No.: 621.3678
Compressed sensing in information processing
LDR
:03055nmm a2200337 a 4500
001
2305069
003
DE-He213
005
20221020213644.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783031097454
$q
(electronic bk.)
020
$a
9783031097447
$q
(paper)
024
7
$a
10.1007/978-3-031-09745-4
$2
doi
035
$a
978-3-031-09745-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1638
$b
.C65 2022
072
7
$a
PBKD
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKD
$2
thema
082
0 4
$a
621.3678
$2
23
090
$a
TA1638
$b
.C737 2022
245
0 0
$a
Compressed sensing in information processing
$h
[electronic resource] /
$c
edited by Gitta Kutyniok, Holger Rauhut, Robert J. Kunsch.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2022.
300
$a
xvii, 542 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Applied and numerical harmonic analysis,
$x
2296-5017
505
0
$a
Hierarchical compressed sensing (G. Wunder) -- Proof Methods for Robust Low-Rank Matrix Recovery (T. Fuchs) -- New Challenges in Covariance Estimation: Multiple Structures and Coarse Quantization (J. Maly) -- Sparse Deterministic and Stochastic Channels: Identification of Spreading Functions and Covariances (Dae Gwan Lee) -- Analysis of Sparse Recovery Algorithms via the Replica Method (A. Bereyhi) -- Unbiasing in Iterative Reconstruction Algorithms for Discrete Compressed Sensing (F.H. Fischer) -- Recovery under Side Constraints (M. Pesavento) -- Compressive Sensing and Neural Networks from a Statistical Learning Perspective (E. Schnoor) -- Angular Scattering Function Estimation Using Deep Neural Networks (Y. Song) -- Fast Radio Propagation Prediction with Deep Learning (R. Levie) -- Active Channel Sparsification: Realizing Frequency Division Duplexing Massive MIMO with Minimal Overhead (M. B. Khalilsarai) -- Atmospheric Radar Imaging Improvements Using Compressed Sensing and MIMO (J. O. Aweda) -- Over-the-Air Computation for Distributed Machine Learning and Consensus in Large Wireless Networks (M. Frey) -- Information Theory and Recovery Algorithms for Data Fusion in Earth Observation (M. Fornasier) -- Sparse Recovery of Sound Fields Using Measurements from Moving Microphones (A. Mertins) -- Compressed Sensing in the Spherical Near-Field to Far-Field Transformation (C. Culotta-López)
520
$a
This contributed volume showcases the most significant results obtained from the DFG Priority Program on Compressed Sensing in Information Processing. Topics considered revolve around timely aspects of compressed sensing with a special focus on applications, including compressed sensing-like approaches to deep learning; bilinear compressed sensing - efficiency, structure, and robustness; structured compressive sensing via neural network learning; compressed sensing for massive MIMO; and security of future communication and compressive sensing.
650
0
$a
Compressed sensing (Telecommunication)
$3
3214582
650
1 4
$a
Abstract Harmonic Analysis.
$3
891093
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
891040
650
2 4
$a
Digital and Analog Signal Processing.
$3
3538815
650
2 4
$a
Image Processing.
$3
891209
700
1
$a
Kutyniok, Gitta.
$3
836514
700
1
$a
Rauhut, Holger.
$3
3607833
700
1
$a
Kunsch, Robert J.
$3
3607834
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Applied and numerical harmonic analysis.
$3
625188
856
4 0
$u
https://doi.org/10.1007/978-3-031-09745-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9446618
電子資源
11.線上閱覽_V
電子書
EB TA1638 .C65 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login