Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Quantization on Nilpotent lie groups
~
Fischer, Veronique.
Linked to FindBook
Google Book
Amazon
博客來
Quantization on Nilpotent lie groups
Record Type:
Electronic resources : Monograph/item
Title/Author:
Quantization on Nilpotent lie groups/ by Veronique Fischer, Michael Ruzhansky.
Author:
Fischer, Veronique.
other author:
Ruzhansky, Michael.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xiii, 557 p. :ill., digital ;24 cm.
[NT 15003449]:
Preface -- Introduction -- Notation and conventions -- 1 Preliminaries on Lie groups -- 2 Quantization on compact Lie groups -- 3 Homogeneous Lie groups -- 4 Rockland operators and Sobolev spaces -- 5 Quantization on graded Lie groups -- 6 Pseudo-differential operators on the Heisenberg group -- A Miscellaneous -- B Group C* and von Neumann algebras -- Schrödinger representations and Weyl quantization -- Explicit symbolic calculus on the Heisenberg group -- List of quantizations -- Bibliography -- Index.
Contained By:
Springer eBooks
Subject:
Nilpotent Lie groups. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-29558-9
ISBN:
9783319295589
Quantization on Nilpotent lie groups
Fischer, Veronique.
Quantization on Nilpotent lie groups
[electronic resource] /by Veronique Fischer, Michael Ruzhansky. - Cham :Springer International Publishing :2016. - xiii, 557 p. :ill., digital ;24 cm. - Progress in mathematics,v.3140743-1643 ;. - Progress in mathematics ;v.295..
Preface -- Introduction -- Notation and conventions -- 1 Preliminaries on Lie groups -- 2 Quantization on compact Lie groups -- 3 Homogeneous Lie groups -- 4 Rockland operators and Sobolev spaces -- 5 Quantization on graded Lie groups -- 6 Pseudo-differential operators on the Heisenberg group -- A Miscellaneous -- B Group C* and von Neumann algebras -- Schrödinger representations and Weyl quantization -- Explicit symbolic calculus on the Heisenberg group -- List of quantizations -- Bibliography -- Index.
Open access.
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.
ISBN: 9783319295589
Standard No.: 10.1007/978-3-319-29558-9doiSubjects--Topical Terms:
628106
Nilpotent Lie groups.
LC Class. No.: QA387
Dewey Class. No.: 512.482
Quantization on Nilpotent lie groups
LDR
:02253nmm m2200349 m 4500
001
2032782
003
DE-He213
005
20160922140519.0
006
m d
007
cr nn 008maaau
008
161011s2016 gw s 0 eng d
020
$a
9783319295589
$q
(electronic bk.)
020
$a
9783319295572
$q
(paper)
024
7
$a
10.1007/978-3-319-29558-9
$2
doi
035
$a
978-3-319-29558-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA387
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT014000
$2
bisacsh
072
7
$a
MAT038000
$2
bisacsh
082
0 4
$a
512.482
$2
23
090
$a
QA387
$b
.F529 2016
100
1
$a
Fischer, Veronique.
$3
2186933
245
1 0
$a
Quantization on Nilpotent lie groups
$h
[electronic resource] /
$c
by Veronique Fischer, Michael Ruzhansky.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhauser,
$c
2016.
300
$a
xiii, 557 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Progress in mathematics,
$x
0743-1643 ;
$v
v.314
505
0
$a
Preface -- Introduction -- Notation and conventions -- 1 Preliminaries on Lie groups -- 2 Quantization on compact Lie groups -- 3 Homogeneous Lie groups -- 4 Rockland operators and Sobolev spaces -- 5 Quantization on graded Lie groups -- 6 Pseudo-differential operators on the Heisenberg group -- A Miscellaneous -- B Group C* and von Neumann algebras -- Schrödinger representations and Weyl quantization -- Explicit symbolic calculus on the Heisenberg group -- List of quantizations -- Bibliography -- Index.
506
$a
Open access.
520
$a
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.
650
0
$a
Nilpotent Lie groups.
$3
628106
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Topological Groups, Lie Groups.
$3
891005
650
2 4
$a
Abstract Harmonic Analysis.
$3
891093
650
2 4
$a
Functional Analysis.
$3
893943
650
2 4
$a
Mathematical Physics.
$3
1542352
700
1
$a
Ruzhansky, Michael.
$3
1066908
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Progress in mathematics ;
$v
v.295.
$3
1566157
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-29558-9
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9278851
電子資源
11.線上閱覽_V
電子書
EB QA387 .F529 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login