語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
到查詢結果
[ null ]
切換:
標籤
|
MARC模式
|
ISBD
Multiscale Structural Optimization f...
~
Snyder, Isabella.
FindBook
Google Book
Amazon
博客來
Multiscale Structural Optimization for Applications in Thermal Stability and Actuation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multiscale Structural Optimization for Applications in Thermal Stability and Actuation./
作者:
Snyder, Isabella.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
70 p.
附註:
Source: Masters Abstracts International, Volume: 86-01.
Contained By:
Masters Abstracts International86-01.
標題:
Mechanical engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31333454
ISBN:
9798383206287
Multiscale Structural Optimization for Applications in Thermal Stability and Actuation.
Snyder, Isabella.
Multiscale Structural Optimization for Applications in Thermal Stability and Actuation.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 70 p.
Source: Masters Abstracts International, Volume: 86-01.
Thesis (M.S.)--Drexel University, 2024.
This thesis outlines a novel multiscale optimization framework for designing multifunctional structures that must withstand mechanical and thermal loads. The objective is to exploit the unique potential of spatially varying microstructures for enhanced thermal stability and actuation capabilities. The methodology hinges on a three-phase material design within the microstructure, composed of materials with high and low coefficients of thermal expansion (CTE) and void material, to achieve a spectrum of CTE from negative to positive. By optimizing the layout of these microstructures within a macrostructure, it is possible to induce desired thermomechanical behaviors, accommodating extreme conditions and precise deformations.To address the computational challenges inherent in designing complex multiscale structures, the research utilizes a deep neural network (DNN) surrogate model for numerical homogenization, significantly reducing the computational cost. The surrogate model predicts effective material properties, which are confirmed against traditional finite element analysis. The structure is optimized using an objective function and a constraint function. This paper analyzes how the use of compliance as the objective function and displacement as a component of the constraint function affects the results. Presented examples validate the optimization approach for thermal stability, where the target displacement is zero, and actuation, where the target displacement is non-zero.
ISBN: 9798383206287Subjects--Topical Terms:
649730
Mechanical engineering.
Subjects--Index Terms:
Actuation
Multiscale Structural Optimization for Applications in Thermal Stability and Actuation.
LDR
:02712nmm a2200421 4500
001
2402109
005
20241028114757.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383206287
035
$a
(MiAaPQ)AAI31333454
035
$a
AAI31333454
035
$a
2402109
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Snyder, Isabella.
$0
(orcid)0000-0002-9882-2816
$3
3772329
245
1 0
$a
Multiscale Structural Optimization for Applications in Thermal Stability and Actuation.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
70 p.
500
$a
Source: Masters Abstracts International, Volume: 86-01.
500
$a
Advisor: Najafi, Ahmad Raeisi.
502
$a
Thesis (M.S.)--Drexel University, 2024.
520
$a
This thesis outlines a novel multiscale optimization framework for designing multifunctional structures that must withstand mechanical and thermal loads. The objective is to exploit the unique potential of spatially varying microstructures for enhanced thermal stability and actuation capabilities. The methodology hinges on a three-phase material design within the microstructure, composed of materials with high and low coefficients of thermal expansion (CTE) and void material, to achieve a spectrum of CTE from negative to positive. By optimizing the layout of these microstructures within a macrostructure, it is possible to induce desired thermomechanical behaviors, accommodating extreme conditions and precise deformations.To address the computational challenges inherent in designing complex multiscale structures, the research utilizes a deep neural network (DNN) surrogate model for numerical homogenization, significantly reducing the computational cost. The surrogate model predicts effective material properties, which are confirmed against traditional finite element analysis. The structure is optimized using an objective function and a constraint function. This paper analyzes how the use of compliance as the objective function and displacement as a component of the constraint function affects the results. Presented examples validate the optimization approach for thermal stability, where the target displacement is zero, and actuation, where the target displacement is non-zero.
590
$a
School code: 0065.
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Mechanics.
$3
525881
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Thermodynamics.
$3
517304
653
$a
Actuation
653
$a
Computational cost
653
$a
Deep neural network
653
$a
Multiscale structures
653
$a
Optimization
653
$a
Thermal stability
690
$a
0548
690
$a
0346
690
$a
0464
690
$a
0348
710
2
$a
Drexel University.
$b
Mechanical Engineering and Mechanics (College of Engineering).
$3
3168962
773
0
$t
Masters Abstracts International
$g
86-01.
790
$a
0065
791
$a
M.S.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31333454
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9510429
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)