語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
到查詢結果
[ null ]
切換:
標籤
|
MARC模式
|
ISBD
In Silico Toxicology: Application of...
~
Daghighi, Amirreza.
FindBook
Google Book
Amazon
博客來
In Silico Toxicology: Application of Machine Learning for Predicting Toxicity of Organic Compounds.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
In Silico Toxicology: Application of Machine Learning for Predicting Toxicity of Organic Compounds./
作者:
Daghighi, Amirreza.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
70 p.
附註:
Source: Masters Abstracts International, Volume: 84-12.
Contained By:
Masters Abstracts International84-12.
標題:
Biomedical engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30419097
ISBN:
9798379698607
In Silico Toxicology: Application of Machine Learning for Predicting Toxicity of Organic Compounds.
Daghighi, Amirreza.
In Silico Toxicology: Application of Machine Learning for Predicting Toxicity of Organic Compounds.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 70 p.
Source: Masters Abstracts International, Volume: 84-12.
Thesis (M.S.)--North Dakota State University, 2023.
Understanding the toxicity of organic compounds is essential to protect human health, the environment, and ensure the safe use of chemicals. While experimental approaches are time-consuming and costly, computational studies offer cost-effective and time-efficient to predict the toxicity of organic compounds. Moreover, computational studies can reduce the need for animal testing and provide insights into the underlying mechanisms of toxicity. This thesis aims to develop Quantitative Structure-Toxicity Relationship (QSTR) models using different Machine Learning (ML) methods to predict the toxicity of organic compounds. The first study uses ensemble learning and Support Vector Regression (SVR) to estimate the toxicity of nitroaromatic compounds. The second study employs one of the largest available toxicology datasets to build a QSTR model that predicts the toxicity of various organic compounds under different experimental conditions. The proposed computational workflow can be an important milestone in developing QSTR models and paves the way for future toxicology studies.
ISBN: 9798379698607Subjects--Topical Terms:
535387
Biomedical engineering.
Subjects--Index Terms:
Machine learning
In Silico Toxicology: Application of Machine Learning for Predicting Toxicity of Organic Compounds.
LDR
:02275nmm a2200409 4500
001
2401055
005
20241015112509.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798379698607
035
$a
(MiAaPQ)AAI30419097
035
$a
AAI30419097
035
$a
2401055
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Daghighi, Amirreza.
$3
3771116
245
1 0
$a
In Silico Toxicology: Application of Machine Learning for Predicting Toxicity of Organic Compounds.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
70 p.
500
$a
Source: Masters Abstracts International, Volume: 84-12.
500
$a
Advisor: Rasulev, Bakhtiyor.
502
$a
Thesis (M.S.)--North Dakota State University, 2023.
520
$a
Understanding the toxicity of organic compounds is essential to protect human health, the environment, and ensure the safe use of chemicals. While experimental approaches are time-consuming and costly, computational studies offer cost-effective and time-efficient to predict the toxicity of organic compounds. Moreover, computational studies can reduce the need for animal testing and provide insights into the underlying mechanisms of toxicity. This thesis aims to develop Quantitative Structure-Toxicity Relationship (QSTR) models using different Machine Learning (ML) methods to predict the toxicity of organic compounds. The first study uses ensemble learning and Support Vector Regression (SVR) to estimate the toxicity of nitroaromatic compounds. The second study employs one of the largest available toxicology datasets to build a QSTR model that predicts the toxicity of various organic compounds under different experimental conditions. The proposed computational workflow can be an important milestone in developing QSTR models and paves the way for future toxicology studies.
590
$a
School code: 0157.
650
4
$a
Biomedical engineering.
$3
535387
650
4
$a
Toxicology.
$3
556884
650
4
$a
Bioinformatics.
$3
553671
653
$a
Machine learning
653
$a
Nitroaromatic compounds
653
$a
Organic compounds
653
$a
QSAR
653
$a
Toxicity
690
$a
0541
690
$a
0800
690
$a
0715
690
$a
0383
710
2
$a
North Dakota State University.
$b
Biomedical Engineering.
$3
3771117
773
0
$t
Masters Abstracts International
$g
84-12.
790
$a
0157
791
$a
M.S.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30419097
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9509375
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)