語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
到查詢結果
[ null ]
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
The Implications of Large-Scale Irrigated Bioenergy Plantations for Future Water use and Water Stress.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Implications of Large-Scale Irrigated Bioenergy Plantations for Future Water use and Water Stress./
作者:
Stenzel, Fabian.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
173 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-07, Section: B.
Contained By:
Dissertations Abstracts International83-07B.
標題:
Plantations. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28926140
ISBN:
9798762119504
The Implications of Large-Scale Irrigated Bioenergy Plantations for Future Water use and Water Stress.
Stenzel, Fabian.
The Implications of Large-Scale Irrigated Bioenergy Plantations for Future Water use and Water Stress.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 173 p.
Source: Dissertations Abstracts International, Volume: 83-07, Section: B.
Thesis (Ph.D.)--Humboldt Universitaet zu Berlin (Germany), 2021.
This item must not be sold to any third party vendors.
Large scale bioenergy plantations with carbon capture and storage (BECCS) are considered an integral part of most scenarios limiting global warming to below 2 C or even 1.5 C, according to the Paris Agreement. To provide sufficient biomass, these plantations are likely to require substantial amounts of freshwater for irrigation which would compete with the projected growing demands from food production, industry, and households. A substantial increase in the water stress for human populations and ecosystems might be the result.This thesis provides a first systematic assessment of 21st century global irrigation water demands for bioenergy production, for which the current body of literature projects a range of 128.4-9,000 km3 yr−1 . The numbers strongly depend on the parameters and assumptions chosen as well as methodologies and models applied. Systematic simulations for the identified key parameters in the dynamic global vegetation model LPJmL yield that even with optimal bioenergy plantation locations, 1.5 C can only be reached in scenarios with highly efficient bioenergy systems or strong irrigation expansion without withdrawal limitations. As a result of the large irrigation requirements, a conflict of interest arises between producing sufficient biomass and protecting environmental flows.A further dilemma is delineated by a comparison of the water stress resulting from the additional irrigation needed to limit climate change and the water stress in a 3 C warmer world without bioenergy. In both scenarios, the global area and the number of people experiencing water stress would increase severely by the end of the 21st century. The bioenergy scenario shows even higher water stress than the case of unmitigated climate change. Sustainable water management, as a combination of water withdrawal restrictions according to environmental flow requirements and improved on-field water management, has the potential to limit this additional water stress. But it would be a challenge to establish such strategies on a global scale.This work confirms that in order to provide large amounts of negative emissions, BECCS might lead to undesired deterioration of our environment and impacts for humanity. It further highlights the dilemma of rising water stress regardless whether climate change or climate change mitigation via irrigated bioenergy become a reality. The focus of this thesis is on the dimension of water, but large scale bioenergy production will also affect other aspects such as biodiversity loss as a result of the large land requirements. Thus, mitigation decisions should be based on systemically analysing all social and environmental dimensions of the Earth system.
ISBN: 9798762119504Subjects--Topical Terms:
3560053
Plantations.
The Implications of Large-Scale Irrigated Bioenergy Plantations for Future Water use and Water Stress.
LDR
:06508nmm a2200361 4500
001
2351431
005
20221107085642.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798762119504
035
$a
(MiAaPQ)AAI28926140
035
$a
(MiAaPQ)Humboldt_1845224078
035
$a
AAI28926140
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Stenzel, Fabian.
$3
3691001
245
1 4
$a
The Implications of Large-Scale Irrigated Bioenergy Plantations for Future Water use and Water Stress.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
173 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-07, Section: B.
500
$a
Advisor: Florke, Martina;Fuss, Sabine;Kruger, Tobias.
502
$a
Thesis (Ph.D.)--Humboldt Universitaet zu Berlin (Germany), 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Large scale bioenergy plantations with carbon capture and storage (BECCS) are considered an integral part of most scenarios limiting global warming to below 2 C or even 1.5 C, according to the Paris Agreement. To provide sufficient biomass, these plantations are likely to require substantial amounts of freshwater for irrigation which would compete with the projected growing demands from food production, industry, and households. A substantial increase in the water stress for human populations and ecosystems might be the result.This thesis provides a first systematic assessment of 21st century global irrigation water demands for bioenergy production, for which the current body of literature projects a range of 128.4-9,000 km3 yr−1 . The numbers strongly depend on the parameters and assumptions chosen as well as methodologies and models applied. Systematic simulations for the identified key parameters in the dynamic global vegetation model LPJmL yield that even with optimal bioenergy plantation locations, 1.5 C can only be reached in scenarios with highly efficient bioenergy systems or strong irrigation expansion without withdrawal limitations. As a result of the large irrigation requirements, a conflict of interest arises between producing sufficient biomass and protecting environmental flows.A further dilemma is delineated by a comparison of the water stress resulting from the additional irrigation needed to limit climate change and the water stress in a 3 C warmer world without bioenergy. In both scenarios, the global area and the number of people experiencing water stress would increase severely by the end of the 21st century. The bioenergy scenario shows even higher water stress than the case of unmitigated climate change. Sustainable water management, as a combination of water withdrawal restrictions according to environmental flow requirements and improved on-field water management, has the potential to limit this additional water stress. But it would be a challenge to establish such strategies on a global scale.This work confirms that in order to provide large amounts of negative emissions, BECCS might lead to undesired deterioration of our environment and impacts for humanity. It further highlights the dilemma of rising water stress regardless whether climate change or climate change mitigation via irrigated bioenergy become a reality. The focus of this thesis is on the dimension of water, but large scale bioenergy production will also affect other aspects such as biodiversity loss as a result of the large land requirements. Thus, mitigation decisions should be based on systemically analysing all social and environmental dimensions of the Earth system.
520
$a
Die meisten Szenarien, die gemas dem Pariser Abkommen die globale Erwarmung auf unter 2 C oder sogar 1.5 C begrenzen, haben einen hohen Flachenbedarf fur Bioenergieplantagen. Um die erforderliche Produktivitat zu erreichen, mussten diese Plantagen vermutlich stark bewassert werden. Der Bewasserungsbedarf stunde in Konkurrenz mit dem ebenfalls wachsenden Wasserbedarf von Landwirtschaft, Industrie und Haushalten. Eine erhebliche Zunahme des Wasserstresses fur die Bevolkerung und die Okosysteme ware die Folge.Diese Arbeit ist die erste systematische Analyse des globalen Bewasserungsbedarfs fur die Bioenergieproduktion des 21. Jahrhundert. In der aktuellen Literatur fnden sich diesbezuglich Prognosen von 128.4-9,000 km3 yr−1 . Die Zahlen hangen stark von den gewahlten Parametern und Annahmen sowie den angewandten Methoden und Modellen ab. In systematischen Simulationen fur die wichtigsten Parameter mit dem globalen Vegetationsmodell LPJmL, ergeben sich zwei mogliche Pfade um die Erwarmung auf 1.5 C zu begrenzen. Entweder mussten hochefziente Bioenergiesysteme entwickelt werden oder es musste eine unbegrenzte Plantagenfache bewassert werden durfen, ohne dabei den Wasserbedarf der Okosysteme zu berucksichtigen. Letzteres fuhrt zu einem Interessenkonfikt, bei dem die Biomasseproduktion zur Klimarettung auf der einen Seite und der Schutz von Okosystemen auf der anderen Seite stehen.Ein weiteres Dilemma wird sichtbar, wenn man den Wasserstress, der sich aus der zusatzlichen Bewasserung ergabe, mit dem in einer durch ungebremsten Klimawandel um 3 C erwarmten Welt ohne Bioenergie vergleicht: In beiden Szenarien konnte (im Vergleich zu heute) der Wasserstress bis zum Ende des 21. Jahrhunderts stark steigen. Tatsachlich ergabe sich im Bioenergie-Szenario aber sogar potenziell mehr Wasserstress als im Klimawandel-Szenario. Nachhaltiges Wassermanagement als Kombination aus Wasserentnahmebeschrankungen gemas den Anforderungen von Flussokosystemen und verbessertemWassermanagement auf agrarischen Nutzfachen hatte das Potenzial, diesen zusatzlichen Wasserstress zu begrenzen, ware jedoch auf globaler Ebene schwierig zu etablieren.Diese Arbeit bestatigt, dass Bioenergieplantagen neben den Negativemissionen, die sie liefern sollen, auch zu unerwunschten Nebenwirkungen in anderen Dimensionen des Erdsystems fuhren konnten. Neben dem Thema Wasser stellt z.B. auch der Biodiversitatsverlust durch Landumwandlung ein ernstes Problem dar. Daher sollten zukunftige Entscheidungen uber Negativemissionstechnologien auf der systemischen Analyse aller sozialen und okologischen Dimensionen des Erdsystems beruhen.
590
$a
School code: 5416.
650
4
$a
Plantations.
$3
3560053
650
4
$a
Plant growth.
$3
3540341
650
4
$a
Carbon dioxide removal.
$3
3562566
650
4
$a
Emissions.
$3
3559499
650
4
$a
Climate change.
$2
bicssc
$3
2079509
650
4
$a
Carbon dioxide.
$3
587886
650
4
$a
Alternative energy.
$3
3436775
650
4
$a
Agricultural engineering.
$3
3168406
650
4
$a
Water resources management.
$3
794747
650
4
$a
Plant sciences.
$3
3173832
690
$a
0404
690
$a
0539
690
$a
0363
690
$a
0595
690
$a
0479
710
2
$a
Humboldt Universitaet zu Berlin (Germany).
$3
3480542
773
0
$t
Dissertations Abstracts International
$g
83-07B.
790
$a
5416
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28926140
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9473869
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)