語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
到查詢結果
[ null ]
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
All the Lenses: Large-Scale Hierarchical Inference of the Hubble Constant from Strong Gravitational Lenses with Bayesian Deep Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
All the Lenses: Large-Scale Hierarchical Inference of the Hubble Constant from Strong Gravitational Lenses with Bayesian Deep Learning./
作者:
Park, Ji Won.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
125 p.
附註:
Source: Dissertations Abstracts International, Volume: 84-01, Section: B.
Contained By:
Dissertations Abstracts International84-01B.
標題:
Stars & galaxies. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29176547
ISBN:
9798835549429
All the Lenses: Large-Scale Hierarchical Inference of the Hubble Constant from Strong Gravitational Lenses with Bayesian Deep Learning.
Park, Ji Won.
All the Lenses: Large-Scale Hierarchical Inference of the Hubble Constant from Strong Gravitational Lenses with Bayesian Deep Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 125 p.
Source: Dissertations Abstracts International, Volume: 84-01, Section: B.
Thesis (Ph.D.)--Stanford University, 2022.
This item must not be sold to any third party vendors.
Unprecedented volumes of data from upcoming sky surveys will yield precise constraints on parameters governing the evolution history of the Universe. One that has received particular attention over the past decade is the Hubble constant (H0) describing the expansion rate of the Universe. This thesis focuses on measuring H0 from an astrophysical phenomenon called strong gravitational lensing.The Vera Rubin Observatory's Legacy Survey of Space and Time (LSST) will increase the sample size of strong lenses from ~100 to ~100,000. This creates an opportunity to obtain the most precise measurement of H0 to date. Fully realizing the potential of LSST data entails rapidly extracting cosmological information from the images, tables, and time series associated with these lenses. My research has focused on developing analysis techniques using Bayesian deep learning, which combines the efficiency of deep learning with principled uncertainty quantification. The techniques promise to automate the analysis of tens of thousands of strong lensing systems in a robust manner. They constitute core methodology that can combine information from all the LSST lenses -- with varying types and signal-to-noise ratios -- into a large-scale hierarchical inference of H0.
ISBN: 9798835549429Subjects--Topical Terms:
3683661
Stars & galaxies.
All the Lenses: Large-Scale Hierarchical Inference of the Hubble Constant from Strong Gravitational Lenses with Bayesian Deep Learning.
LDR
:02369nmm a2200313 4500
001
2349951
005
20221010063705.5
008
241004s2022 ||||||||||||||||| ||eng d
020
$a
9798835549429
035
$a
(MiAaPQ)AAI29176547
035
$a
(MiAaPQ)STANFORDcd335wx5645
035
$a
AAI29176547
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Park, Ji Won.
$3
3689383
245
1 0
$a
All the Lenses: Large-Scale Hierarchical Inference of the Hubble Constant from Strong Gravitational Lenses with Bayesian Deep Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
125 p.
500
$a
Source: Dissertations Abstracts International, Volume: 84-01, Section: B.
500
$a
Advisor: Roodman, Aaron J. ;Burchat, P. ;Kahn, Steven M.
502
$a
Thesis (Ph.D.)--Stanford University, 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
Unprecedented volumes of data from upcoming sky surveys will yield precise constraints on parameters governing the evolution history of the Universe. One that has received particular attention over the past decade is the Hubble constant (H0) describing the expansion rate of the Universe. This thesis focuses on measuring H0 from an astrophysical phenomenon called strong gravitational lensing.The Vera Rubin Observatory's Legacy Survey of Space and Time (LSST) will increase the sample size of strong lenses from ~100 to ~100,000. This creates an opportunity to obtain the most precise measurement of H0 to date. Fully realizing the potential of LSST data entails rapidly extracting cosmological information from the images, tables, and time series associated with these lenses. My research has focused on developing analysis techniques using Bayesian deep learning, which combines the efficiency of deep learning with principled uncertainty quantification. The techniques promise to automate the analysis of tens of thousands of strong lensing systems in a robust manner. They constitute core methodology that can combine information from all the LSST lenses -- with varying types and signal-to-noise ratios -- into a large-scale hierarchical inference of H0.
590
$a
School code: 0212.
650
4
$a
Stars & galaxies.
$3
3683661
650
4
$a
Time series.
$3
3561811
650
4
$a
Neural networks.
$3
677449
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Astronomy.
$3
517668
690
$a
0800
690
$a
0606
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
84-01B.
790
$a
0212
791
$a
Ph.D.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29176547
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9472389
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)