語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
到查詢結果
[ null ]
切換:
標籤
|
MARC模式
|
ISBD
Learning from Production Test Data: ...
~
Lin, Fan.
FindBook
Google Book
Amazon
博客來
Learning from Production Test Data: From Statistical Characterization to Modeling for Anomaly Detection.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning from Production Test Data: From Statistical Characterization to Modeling for Anomaly Detection./
作者:
Lin, Fan.
面頁冊數:
133 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Contained By:
Dissertation Abstracts International78-03B(E).
標題:
Computer engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10159799
ISBN:
9781369147278
Learning from Production Test Data: From Statistical Characterization to Modeling for Anomaly Detection.
Lin, Fan.
Learning from Production Test Data: From Statistical Characterization to Modeling for Anomaly Detection.
- 133 p.
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Thesis (Ph.D.)--University of California, Santa Barbara, 2016.
Modern test programs for post-silicon testing include a large number of test measurements applied in multiple settings such as different temperatures, supply voltages, and operation modes to meet the demanding quality requirements of the products. In addition to the pass/fail results of each test item, there exist multiple types of correlations in the huge amount of production test data. Identifying and modeling the hidden correlations in the test data could help screen test escapes, which are chips that pass all test items but fail in system-level application.
ISBN: 9781369147278Subjects--Topical Terms:
621879
Computer engineering.
Learning from Production Test Data: From Statistical Characterization to Modeling for Anomaly Detection.
LDR
:02283nmm a2200277 4500
001
2079403
005
20170313112142.5
008
170521s2016 ||||||||||||||||| ||eng d
020
$a
9781369147278
035
$a
(MiAaPQ)AAI10159799
035
$a
AAI10159799
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lin, Fan.
$3
2134885
245
1 0
$a
Learning from Production Test Data: From Statistical Characterization to Modeling for Anomaly Detection.
300
$a
133 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
500
$a
Adviser: Kwang-Ting (Tim) Cheng.
502
$a
Thesis (Ph.D.)--University of California, Santa Barbara, 2016.
520
$a
Modern test programs for post-silicon testing include a large number of test measurements applied in multiple settings such as different temperatures, supply voltages, and operation modes to meet the demanding quality requirements of the products. In addition to the pass/fail results of each test item, there exist multiple types of correlations in the huge amount of production test data. Identifying and modeling the hidden correlations in the test data could help screen test escapes, which are chips that pass all test items but fail in system-level application.
520
$a
This thesis focuses on developing revealing features and machine learning algorithms for classifying test escapes based on production test data. In terms of feature engineering, three types of feature sets that represent different aspects of how a chip deviates from the normal population are proposed. In addition, a linear transformation that compacts the critical information for feature reduction and a collection of nonlinear transformations that reveal additional abnormalities of the test escapes are proposed to effectively expose the test escapes as outliers in certain perspectives. We have also developed frameworks exploiting state-of-the-art machine learning algorithms including a support vector machine (SVM), a cascade of AdaBoost classifiers, and an artificial neural network.
590
$a
School code: 0035.
650
4
$a
Computer engineering.
$3
621879
690
$a
0464
710
2
$a
University of California, Santa Barbara.
$b
Electrical and Computer Engineering.
$3
2095334
773
0
$t
Dissertation Abstracts International
$g
78-03B(E).
790
$a
0035
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10159799
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9312281
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)